On spectral curve for functional-difference Shrödinger equation
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 107-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The method of construction some set of finite-gap solutions of functional-difference deformation Shrödinger equation $v(x)f(x+2h)+f(x)=\lambda f(x+h)$ is offered. It is shown that edges of gaps of corresponding spectral curve depend on $x$. Examples are given. Bibl. – 7 titles.
@article{ZNSL_2010_374_a6,
     author = {G. M. Golovachev and A. O. Smirnov},
     title = {On spectral curve for functional-difference {Shr\"odinger} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {107--120},
     year = {2010},
     volume = {374},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a6/}
}
TY  - JOUR
AU  - G. M. Golovachev
AU  - A. O. Smirnov
TI  - On spectral curve for functional-difference Shrödinger equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 107
EP  - 120
VL  - 374
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a6/
LA  - ru
ID  - ZNSL_2010_374_a6
ER  - 
%0 Journal Article
%A G. M. Golovachev
%A A. O. Smirnov
%T On spectral curve for functional-difference Shrödinger equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 107-120
%V 374
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a6/
%G ru
%F ZNSL_2010_374_a6
G. M. Golovachev; A. O. Smirnov. On spectral curve for functional-difference Shrödinger equation. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 107-120. http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a6/

[1] J. F. van Diejen, “Integrability of difference Calogero-Moser systems”, J. Math. Phys., 35:6 (1994), 2983–3004 | DOI | MR | Zbl

[2] P. Gaillard, “A new family of deformations of Darboux–Pöschl–Teller potentials”, Lett. Math. Phys., 68 (2004), 77–90 | DOI | MR | Zbl

[3] V. B. Matveev, “Functional-difference deformations of Darboux–Pöshl–Teller potentials”, Bilinear integrable systems: from classical to quantum, continuous to discrete, NATO Sci. Ser. II Math. Phys. Chem., 201, Springer, Dordrecht, 2006, 191–208 | MR | Zbl

[4] P. Gailard, V. B. Matveev, New formulas for the eigenfuntions of the two-particle difference Calogero–Moser system, Preprint, 2009, 15 pp. | MR

[5] I. M. Krichever, “Algebraicheskie krivye i nelineinye raznostnye uravneniya”, UMN, 33:4 (1978), 215–216 | MR | Zbl

[6] A. O. Smirnov, “Elliptic solitons and Heun equation”, CRM Proc. Lect. Notes., 32, 2002, 287–305 | MR | Zbl

[7] A. O. Smirnov, “Finite-gap solutions of the Fuchsian equation”, Lett. Math. Phys., 76:2–3 (2006), 297–316 | DOI | MR | Zbl