Factorization of the $R$-matrix for the quantum algebra $U_q(s\ell_n)$
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 92-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We propose the method for constructing the general solution of the Yang–Baxter equation with $U_q(s\ell_n)$ algebra symmetry, which is based on the factorization property of the corresponding $L$-operator. We present the closed-form expression for the universal $R$-matrix being the difference operator acting on the space of functions of $n(n-1)$ variables. Bibl. – 16 titles.
@article{ZNSL_2010_374_a5,
     author = {P. A. Valinevich},
     title = {Factorization of the $R$-matrix for the quantum algebra $U_q(s\ell_n)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {92--106},
     year = {2010},
     volume = {374},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a5/}
}
TY  - JOUR
AU  - P. A. Valinevich
TI  - Factorization of the $R$-matrix for the quantum algebra $U_q(s\ell_n)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 92
EP  - 106
VL  - 374
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a5/
LA  - ru
ID  - ZNSL_2010_374_a5
ER  - 
%0 Journal Article
%A P. A. Valinevich
%T Factorization of the $R$-matrix for the quantum algebra $U_q(s\ell_n)$
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 92-106
%V 374
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a5/
%G ru
%F ZNSL_2010_374_a5
P. A. Valinevich. Factorization of the $R$-matrix for the quantum algebra $U_q(s\ell_n)$. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 92-106. http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a5/

[1] L. D. Faddeev, “How algebraic Bethe ansatz works for integrable model”, Les-Houches Lectures, 1995

[2] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi, I”, TMF, 40:2 (1979), 194–220 | MR

[3] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Lecture Notes in Physics, 151, 1982, 61–119 | DOI | MR | Zbl

[4] P. P. Kulish, E. K. Sklyanin, “On the solution of the Yang–Baxter equation”, Zap. Nauchn. Semin. LOMI, 95, 1980, 129 | MR

[5] S. E. Derkachov, D. R. Karakhanyan, R. Kirschner, P. A. Valinevich, “Iterative construction of $U_q(s\ell(n+1))$ representations and Lax matrix factorisation”, Lett. Math. Phys., 85 (2008), 221 | DOI | MR | Zbl

[6] I. M. Gelfand, M. A. Naimark, Unitarnye predstavleniya klassicheskikh grupp, Trudy Matematicheskogo Instituta im. Steklova, 36, 1950 | MR | Zbl

[7] A. Borel, A. Weyl, “Representations lineaires et espaces homogenes Kählerians des groupes de Lie compactes”, Sem. Bourbaki, May 1954

[8] P. Jordan, “Der Zusammenhang der symmetrischen und linearen Gruppen und das Mehrkörperproblem”, Zeitschr. f. Physik, 94 (1935), 531 | DOI | Zbl

[9] D. P. Zhelobenko, A. N. Shtern, Predstavleniya grupp Li, Nauka, M., 1983 | MR

[10] S. Derkachov, A. Manashov, “$R$-Matrix and Baxter $Q$-Operators for the Noncompact $SL(N,C)$ Invariant Spin Chain”, SIGMA, 2 (2006), 084 | MR | Zbl

[11] L. Biedenharn, M. Lohe, “An Extension of the Borel–Weyl construction to the quantum group $U_q(n)$”, Comm. Math. Phys., 146 (1992), 483 | DOI | MR | Zbl

[12] V. K. Dobrev, P. Truini, “Polynomial realization of $U_q(sl_3)$ Gel'fand–(Weyl)–Zetlin basis”, J. Math. Phys., 38 (1997), 3750 | DOI | MR | Zbl

[13] L. Biedenharn, M. Lohe, Quantum group symmetry and $q$-tensor algebras, World Scientific, 1995 | MR

[14] M. Jimbo, “A $q$-difference analog of $U(g)$ and the Yang–Baxter equation”, Lett. Math. Phys., 10 (1985), 63 | DOI | MR | Zbl

[15] V. K. Dobrev, “$q$-difference intertwining operators for $U_q(sl(n))$: general setting and the case $n=3$”, J. Phys. A, 27 (1994), 4841 | DOI | MR | Zbl

[16] L. D. Faddeev, R. M. Kashaev, “Quantum dilogarithm”, Mod. Phys. Lett. A, 9 (1994), 427 ; A. N. Kirillov, “Dilogarithm identities”, Progr. Theor. Phys. Suppl., 118 (1995), 61 | DOI | MR | Zbl | DOI | MR | Zbl