Factorization of the $R$-matrix for the quantum algebra $U_q(s\ell_n)$
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 92-106

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose the method for constructing the general solution of the Yang–Baxter equation with $U_q(s\ell_n)$ algebra symmetry, which is based on the factorization property of the corresponding $L$-operator. We present the closed-form expression for the universal $R$-matrix being the difference operator acting on the space of functions of $n(n-1)$ variables. Bibl. – 16 titles.
@article{ZNSL_2010_374_a5,
     author = {P. A. Valinevich},
     title = {Factorization of the $R$-matrix for the quantum algebra $U_q(s\ell_n)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {92--106},
     publisher = {mathdoc},
     volume = {374},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a5/}
}
TY  - JOUR
AU  - P. A. Valinevich
TI  - Factorization of the $R$-matrix for the quantum algebra $U_q(s\ell_n)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 92
EP  - 106
VL  - 374
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a5/
LA  - ru
ID  - ZNSL_2010_374_a5
ER  - 
%0 Journal Article
%A P. A. Valinevich
%T Factorization of the $R$-matrix for the quantum algebra $U_q(s\ell_n)$
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 92-106
%V 374
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a5/
%G ru
%F ZNSL_2010_374_a5
P. A. Valinevich. Factorization of the $R$-matrix for the quantum algebra $U_q(s\ell_n)$. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 92-106. http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a5/