On constant $U_q(sl_2)$-invariant $R$-matrices
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 82-91

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectral resolution of a $U_q(sl_2)$-invariant solution $R$ of the constant Yang–Baxter equation in the braid group form is considered. It is shown that, if the two highest coefficients in this resolution are not equal, then $R$ is either the Drinfeld $R$-matrix or its inverse. Bibl. – 13 titles.
@article{ZNSL_2010_374_a4,
     author = {A. G. Bytsko},
     title = {On constant $U_q(sl_2)$-invariant $R$-matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {82--91},
     publisher = {mathdoc},
     volume = {374},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a4/}
}
TY  - JOUR
AU  - A. G. Bytsko
TI  - On constant $U_q(sl_2)$-invariant $R$-matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 82
EP  - 91
VL  - 374
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a4/
LA  - ru
ID  - ZNSL_2010_374_a4
ER  - 
%0 Journal Article
%A A. G. Bytsko
%T On constant $U_q(sl_2)$-invariant $R$-matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 82-91
%V 374
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a4/
%G ru
%F ZNSL_2010_374_a4
A. G. Bytsko. On constant $U_q(sl_2)$-invariant $R$-matrices. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 82-91. http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a4/