@article{ZNSL_2010_374_a4,
author = {A. G. Bytsko},
title = {On constant $U_q(sl_2)$-invariant $R$-matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {82--91},
year = {2010},
volume = {374},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a4/}
}
A. G. Bytsko. On constant $U_q(sl_2)$-invariant $R$-matrices. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 82-91. http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a4/
[1] J. S. Birman, H. Wenzl, “Braids, link polynomials and a new algebra”, Trans. Amer. Math. Soc., 313 (1989), 249–273 | DOI | MR | Zbl
[2] R. Brauer, “On algebras which are connected with the semisimple continuous groups”, Ann. of Math. (2), 38 (1937), 857–872 | DOI | MR | Zbl
[3] A. G. Bytsko, “O $U_q(sl_2)$-invariantnykh $R$-matritsakh dlya starshikh spinov”, Algebra i analiz, 17:3 (2005), 24–46 | MR | Zbl
[4] A. G. Bytsko, “Ob odnom anzattse dlya $sl_2$-invariantnykh $R$-matrits”, Zap. nauchn. semin. POMI, 335, 2006, 100–118 | MR | Zbl
[5] A. G. Bytsko, Non-Hermitian spin chains with inhomogeneous coupling, arXiv: 0911.4476
[6] V. G. Drinfeld, “Kvantovye gruppy”, Zap. nauchn. semin. LOMI, 155, 1986, 18–49 | MR | Zbl
[7] V. G. Drinfeld, “O pochti kokommutativnykh algebrakh Khopfa”, Algebra i analiz, 1:2 (1989), 30–46 | MR | Zbl
[8] A. N. Kirillov, N. Yu. Reshetikhin, “Representations of the algebra $U_q(sl(2))$, $q$-orthogonal polynomials and invariants of links”, Adv. Series in Math. Phys., 7, World Scientific, 1989, 285–339 | MR
[9] P. P. Kulish, N. Yu. Reshetikhin, “Kvantovaya lineinaya zadacha dlya uravneniya sinus-Gordon i vysshie predstavleniya”, Zap. nauchn. semin. LOMI, 101, 1981, 101–110 | MR
[10] J. Murakami, “The Kauffman polynomial of links and representation theory”, Osaka J. of Math., 24 (1987), 745–758 | MR | Zbl
[11] M. Nomura, “Yang–Baxter relation in terms of $n-j$ symbols of $su_q(2)$ algerbra”, J. Phys. Soc. Jap., 58 (1989), 2694–2704 | DOI | MR
[12] E. K. Sklyanin, “Ob odnoi algebre, porozhdaemoi kvadratichnymi sootnosheniyami”, Uspekhi mat. nauk, 40:2 (1985), 214
[13] H. N. V. Temperley, E. H. Lieb, “Relations between the percolation and colouring problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the percolation problem”, Proc. Roy. Soc. London Ser. A, 322 (1971), 251–280 | DOI | MR | Zbl