Three-magnon problem and integrability of rung-dimerized spin ladders
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 44-57

Voir la notice de l'article provenant de la source Math-Net.Ru

Integrability problem for rung-dimerized spin ladder is studied by coordinate Bethe Ansatz method in three-magnon sector. It is shown that solvability of the three-magnon problem takes place for the same values of coupling constants in the Hamiltonian which guaranty solvability of the Yang–Baxter equation for the corresponding $R$-matrix. Bibl. – 15 titles.
@article{ZNSL_2010_374_a2,
     author = {P. N. Bibikov and P. P. Kulish},
     title = {Three-magnon problem and integrability of rung-dimerized spin ladders},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {44--57},
     publisher = {mathdoc},
     volume = {374},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a2/}
}
TY  - JOUR
AU  - P. N. Bibikov
AU  - P. P. Kulish
TI  - Three-magnon problem and integrability of rung-dimerized spin ladders
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 44
EP  - 57
VL  - 374
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a2/
LA  - ru
ID  - ZNSL_2010_374_a2
ER  - 
%0 Journal Article
%A P. N. Bibikov
%A P. P. Kulish
%T Three-magnon problem and integrability of rung-dimerized spin ladders
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 44-57
%V 374
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a2/
%G ru
%F ZNSL_2010_374_a2
P. N. Bibikov; P. P. Kulish. Three-magnon problem and integrability of rung-dimerized spin ladders. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 44-57. http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a2/