On the generalized Chaplygin system
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 250-267

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss two polynomial bi-Hamiltonian structures for the generalized integrable Chaplygin system on the sphere $\mathcal S^2$ with an additional integral of fourth order in momenta. An explicit procedure to find the variables of separation, the separation relations and the transformation of the corresponding algebraic curves of genus two is considered in detail. Bibl. – 21 titles.
@article{ZNSL_2010_374_a12,
     author = {A. V. Tsiganov},
     title = {On the generalized {Chaplygin} system},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {250--267},
     publisher = {mathdoc},
     volume = {374},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a12/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - On the generalized Chaplygin system
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 250
EP  - 267
VL  - 374
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a12/
LA  - en
ID  - ZNSL_2010_374_a12
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T On the generalized Chaplygin system
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 250-267
%V 374
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a12/
%G en
%F ZNSL_2010_374_a12
A. V. Tsiganov. On the generalized Chaplygin system. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 250-267. http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a12/