@article{ZNSL_2010_374_a12,
author = {A. V. Tsiganov},
title = {On the generalized {Chaplygin} system},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {250--267},
year = {2010},
volume = {374},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a12/}
}
A. V. Tsiganov. On the generalized Chaplygin system. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 250-267. http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a12/
[1] M. Audin, Spinning Tops, a Course on Integrable Systems, Cambridge Studies in Advanced Mathematics, 51, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl
[2] S. A. Chaplygin, “A new partial solution of the problem of motion of a rigid body in a liquid”, Trudy Otdel. Fiz . Nauk Obsh. Liub. Est., 11 (1903), 7–10
[3] B. A. Dubrovin, Riemann Surfaces and Nonlinear Equations, Amer. Math. Soc., 2002
[4] G. Falqui, M. Pedroni, “Separation of variables for bi-Hamiltonian systems”, Math. Phys. Anal. Geom., 6 (2003), 139–179 | DOI | MR | Zbl
[5] G. Frey, E. Kani, “Curves of genus 2 with elliptic differentials and associated Hurwitz spaces”, Arithmetic, Geometry, Cryptography, and Coding Theory, Contemp. Math., 487, 2009, 33–81 | DOI | MR | Zbl
[6] V. B. Kuznetsov, A. V. Tsiganov, “A pecial case of Neumann's system and the Kowalewski–Chaplygin–Goryachev top”, J. Phys. A, 22 (1989), L73–L79 | DOI | MR | Zbl
[7] S. Rauch-Wojciechowski, A. V. Tsiganov, “Quasi-point separation of variables for Hénon–Heiles system and system with quartic potential”, J. Physics A, 29 (1996), 7769–7778 | DOI | MR | Zbl
[8] A. M. Lyapunov, “On a Certain Property of the Differential Equations of the Problem of Motion of a Heavy Rigid Body Having a Fixed Point”, Soobshch. Kharkov Math. Obshch. Ser. 2, 4 (1894), 123–140; Collected works, v. I, Izdat. Akad. Nauk SSSR, Moscow, 1954 (Russian)
[9] F. Magri, “Eight lectures on Integrable Systems”, Integrability of Nonlinear Systems, Lect. Notes Phys., 495, eds. Y. Kosmann-Schwarzbach et al., Springer Verlag, Berlin–Heidelberg, 1997, 256–296 | DOI | MR | Zbl
[10] F. Richelot, “Essai sur uneméthode générale pour déterminer la valeur des intégrales ultra-elliptiques, fondée sur des transformations remarquables de ces transcendantes”, C. R. Acad. Sci. Paris, 2 (1836), 622–627
[11] E. K. Sklyanin, “Separation of variables – new trends”, Progr. Theor. Phys. Suppl., 118 (1995), 35 | DOI | MR | Zbl
[12] A. V. Tsiganov, “On the Kowalevski–Goryachev–Chaplygin gyrostat”, J. Phys. A Math. Gen., 35:26 (2002), L309–L318 | DOI | MR | Zbl
[13] A. V. Tsiganov, “On the two different bi-Hamiltonian structures for the Toda lattice”, J. Phys. A Math. Theor., 40 (2007), 6395–6406 | DOI | MR | Zbl
[14] A. V. Tsiganov, “Separation of variables for a pair of integrable systems on $\mathrm{so}^*(4)$”, Dokl. Math., 76 (2007), 839–842 | DOI | Zbl
[15] A. V. Tsiganov, “On bi-hamiltonian structure of some integrable systems on $so^*(4)$”, J. Nonlinear Math. Phys., 15 (2008), 171–185 | DOI | MR | Zbl
[16] A. V. Tsiganov, “On bi-hamiltonian geometry of the Lagrange top”, J. Phys. A Math. Theor., 41 (2008), 315212 | DOI | MR | Zbl
[17] A. V. Tsiganov, “The Poisson bracket compatible with the classical reflection equation algebra”, Regular and Chaotic Dynamics, 13 (2008), 191–203 | DOI | MR | Zbl
[18] P. Vanhaecke, Integrable Systems in the Realm of Algebraic Geometry, Lect. Notes Math., 1638, Springer-Verlag, Berlin, 1996 | DOI | MR | Zbl
[19] A. V. Vershilov, A. V. Tsiganov, “On bi-Hamiltonian geometry of some integrable systems on the sphere with cubic integral of motion”, J. Phys. A Math. Theor., 42 (2009), 105203 | DOI | MR | Zbl
[20] H. M. Yehia, A. A. Elmandouh, “New Integrable Systems with a Quartic Integral and New Generalizations of Kovalevskaya's and Goriatchev's Cases”, Regular and Chaotic Dynamics, 13 (2008), 56–69 | MR
[21] S. L. Ziglin, “Branching of Solutions and Non-Existence of First Integrals in Hamiltonian Mechanics, I”, Funct. Anal. Appl., 16:3 (1982), 181–189 ; “II”, 17:1 (1983), 6–17 | DOI | MR | Zbl | DOI | MR | Zbl