On the generalized Chaplygin system
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 250-267 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We discuss two polynomial bi-Hamiltonian structures for the generalized integrable Chaplygin system on the sphere $\mathcal S^2$ with an additional integral of fourth order in momenta. An explicit procedure to find the variables of separation, the separation relations and the transformation of the corresponding algebraic curves of genus two is considered in detail. Bibl. – 21 titles.
@article{ZNSL_2010_374_a12,
     author = {A. V. Tsiganov},
     title = {On the generalized {Chaplygin} system},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {250--267},
     year = {2010},
     volume = {374},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a12/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - On the generalized Chaplygin system
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 250
EP  - 267
VL  - 374
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a12/
LA  - en
ID  - ZNSL_2010_374_a12
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T On the generalized Chaplygin system
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 250-267
%V 374
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a12/
%G en
%F ZNSL_2010_374_a12
A. V. Tsiganov. On the generalized Chaplygin system. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 250-267. http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a12/

[1] M. Audin, Spinning Tops, a Course on Integrable Systems, Cambridge Studies in Advanced Mathematics, 51, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl

[2] S. A. Chaplygin, “A new partial solution of the problem of motion of a rigid body in a liquid”, Trudy Otdel. Fiz . Nauk Obsh. Liub. Est., 11 (1903), 7–10

[3] B. A. Dubrovin, Riemann Surfaces and Nonlinear Equations, Amer. Math. Soc., 2002

[4] G. Falqui, M. Pedroni, “Separation of variables for bi-Hamiltonian systems”, Math. Phys. Anal. Geom., 6 (2003), 139–179 | DOI | MR | Zbl

[5] G. Frey, E. Kani, “Curves of genus 2 with elliptic differentials and associated Hurwitz spaces”, Arithmetic, Geometry, Cryptography, and Coding Theory, Contemp. Math., 487, 2009, 33–81 | DOI | MR | Zbl

[6] V. B. Kuznetsov, A. V. Tsiganov, “A pecial case of Neumann's system and the Kowalewski–Chaplygin–Goryachev top”, J. Phys. A, 22 (1989), L73–L79 | DOI | MR | Zbl

[7] S. Rauch-Wojciechowski, A. V. Tsiganov, “Quasi-point separation of variables for Hénon–Heiles system and system with quartic potential”, J. Physics A, 29 (1996), 7769–7778 | DOI | MR | Zbl

[8] A. M. Lyapunov, “On a Certain Property of the Differential Equations of the Problem of Motion of a Heavy Rigid Body Having a Fixed Point”, Soobshch. Kharkov Math. Obshch. Ser. 2, 4 (1894), 123–140; Collected works, v. I, Izdat. Akad. Nauk SSSR, Moscow, 1954 (Russian)

[9] F. Magri, “Eight lectures on Integrable Systems”, Integrability of Nonlinear Systems, Lect. Notes Phys., 495, eds. Y. Kosmann-Schwarzbach et al., Springer Verlag, Berlin–Heidelberg, 1997, 256–296 | DOI | MR | Zbl

[10] F. Richelot, “Essai sur uneméthode générale pour déterminer la valeur des intégrales ultra-elliptiques, fondée sur des transformations remarquables de ces transcendantes”, C. R. Acad. Sci. Paris, 2 (1836), 622–627

[11] E. K. Sklyanin, “Separation of variables – new trends”, Progr. Theor. Phys. Suppl., 118 (1995), 35 | DOI | MR | Zbl

[12] A. V. Tsiganov, “On the Kowalevski–Goryachev–Chaplygin gyrostat”, J. Phys. A Math. Gen., 35:26 (2002), L309–L318 | DOI | MR | Zbl

[13] A. V. Tsiganov, “On the two different bi-Hamiltonian structures for the Toda lattice”, J. Phys. A Math. Theor., 40 (2007), 6395–6406 | DOI | MR | Zbl

[14] A. V. Tsiganov, “Separation of variables for a pair of integrable systems on $\mathrm{so}^*(4)$”, Dokl. Math., 76 (2007), 839–842 | DOI | Zbl

[15] A. V. Tsiganov, “On bi-hamiltonian structure of some integrable systems on $so^*(4)$”, J. Nonlinear Math. Phys., 15 (2008), 171–185 | DOI | MR | Zbl

[16] A. V. Tsiganov, “On bi-hamiltonian geometry of the Lagrange top”, J. Phys. A Math. Theor., 41 (2008), 315212 | DOI | MR | Zbl

[17] A. V. Tsiganov, “The Poisson bracket compatible with the classical reflection equation algebra”, Regular and Chaotic Dynamics, 13 (2008), 191–203 | DOI | MR | Zbl

[18] P. Vanhaecke, Integrable Systems in the Realm of Algebraic Geometry, Lect. Notes Math., 1638, Springer-Verlag, Berlin, 1996 | DOI | MR | Zbl

[19] A. V. Vershilov, A. V. Tsiganov, “On bi-Hamiltonian geometry of some integrable systems on the sphere with cubic integral of motion”, J. Phys. A Math. Theor., 42 (2009), 105203 | DOI | MR | Zbl

[20] H. M. Yehia, A. A. Elmandouh, “New Integrable Systems with a Quartic Integral and New Generalizations of Kovalevskaya's and Goriatchev's Cases”, Regular and Chaotic Dynamics, 13 (2008), 56–69 | MR

[21] S. L. Ziglin, “Branching of Solutions and Non-Existence of First Integrals in Hamiltonian Mechanics, I”, Funct. Anal. Appl., 16:3 (1982), 181–189 ; “II”, 17:1 (1983), 6–17 | DOI | MR | Zbl | DOI | MR | Zbl