Solution of the integrable model of the spinor Bose–Einstein condensate with the dipole-dipole interaction
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 5-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The model that describes the internal degrees of freedom of the spinor Bose–Einstein condensate with dipole-dipole interaction is solved up to its eigenstates and eigenvalues. The representation of the Hamiltonian of the model in terms of generators of $su(1,1)$ algebra allowed to develop the quantum inverse method for its investigation. The method of solution provides a general framework within which many related problems can similarly be solved. Bibl. – 16 titles.
@article{ZNSL_2010_374_a0,
     author = {N. I. Abarenkova and N. M. Bogoliubov},
     title = {Solution of the integrable model of the spinor {Bose{\textendash}Einstein} condensate with the dipole-dipole interaction},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--27},
     year = {2010},
     volume = {374},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a0/}
}
TY  - JOUR
AU  - N. I. Abarenkova
AU  - N. M. Bogoliubov
TI  - Solution of the integrable model of the spinor Bose–Einstein condensate with the dipole-dipole interaction
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 5
EP  - 27
VL  - 374
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a0/
LA  - ru
ID  - ZNSL_2010_374_a0
ER  - 
%0 Journal Article
%A N. I. Abarenkova
%A N. M. Bogoliubov
%T Solution of the integrable model of the spinor Bose–Einstein condensate with the dipole-dipole interaction
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 5-27
%V 374
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a0/
%G ru
%F ZNSL_2010_374_a0
N. I. Abarenkova; N. M. Bogoliubov. Solution of the integrable model of the spinor Bose–Einstein condensate with the dipole-dipole interaction. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 5-27. http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a0/

[1] C. K. Law, H. Pu, N. P. Bigelow, “Quantum spin mixing in spinor Bose–Einstein condensates”, Phys. Rev. Lett., 24 (1998), 5257 | DOI

[2] H. Pu, C. K. Law, S. Raghavan, J. H. Eberly, N. P. Bigelow, “Spin-mixing dynamics of a spinor Bose–Einstein condensate”, Phys. Rev. A, 60 (1999), 1463 | DOI

[3] Ö. E. Müstecaplioǧlu, M. Zhang, S. Yi, L. You, C. P. Sun, “Dynamic fragmentation of a spinor Bose–Einstein condensate”, Phys. Rev. A, 68 (2003), 63616 | DOI

[4] S. Yi, L. You, H. Pu, “Quantum phases of dipolar spinor condensates”, Phys. Rev. Lett., 93 (2004), 040403 | DOI | Zbl

[5] M. Takahashi, Sankalpa Ghosh, T. Mizushima, K. Machida, “Spinor dipolar Bose-Einstein condensates: Classical spin approach”, Phys. Rev. Lett., 98 (2007), 260403 | DOI

[6] T. Lahaye, J. Metz, T. Koch, B. Fröhlich, A. Griesmaier, T. Pfau, “A purely dipolar quantum gas”, Atomic Physics 21, Proceeding of the XXI International Conference of Atomic Phiysics (ICAP 2008)

[7] S. Yi, H. Pu, Dipolar spinor Bose-Einstein condensates, 2008, arXiv: 0804.0191v1

[8] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi, I”, Teor. mat. fiz., 40:2 (1979), 194 | MR

[9] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[10] N. M. Bogolyubov, A. G. Izergin, V. E. Korepin, Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, Nauka, Moskva, 1992 | MR | Zbl

[11] N. M. Bogolyubov, “Spinornyi bole kondensat i $su(1,1)$ model Richardsona”, Zap. nauchn. semin. POMI, 317, 2004, 43 | MR | Zbl

[12] A. Rybin, G. Kastelewicz, J. Timonen, N. Bogoliubov, “The $su(1,1)$ Tavis–Cummings model”, J. Phys. A, 31 (1998), 4705–4723 | DOI | MR | Zbl

[13] C. Gerry, A. Benmoussa, “Two mode coherent states for $SU(1,1)\otimes SU(1,1)$”, Phys. Rev. A, 62 (2000), 033812 | DOI

[14] R. W. Richardson, “Exactly solvable many-boson model”, J. Math. Phys., 9 (1968), 1327–1344 | DOI

[15] M. Goden, Volnovaya funktsiya Bete, Mir, Moskva, 1987 | MR

[16] E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Cambridge Univ. Press, Cambridge, 1931 | Zbl