Solution of the integrable model of the spinor Bose--Einstein condensate with the dipole-dipole interaction
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 5-27

Voir la notice de l'article provenant de la source Math-Net.Ru

The model that describes the internal degrees of freedom of the spinor Bose–Einstein condensate with dipole-dipole interaction is solved up to its eigenstates and eigenvalues. The representation of the Hamiltonian of the model in terms of generators of $su(1,1)$ algebra allowed to develop the quantum inverse method for its investigation. The method of solution provides a general framework within which many related problems can similarly be solved. Bibl. – 16 titles.
@article{ZNSL_2010_374_a0,
     author = {N. I. Abarenkova and N. M. Bogoliubov},
     title = {Solution of the integrable model of the spinor {Bose--Einstein} condensate with the dipole-dipole interaction},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--27},
     publisher = {mathdoc},
     volume = {374},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a0/}
}
TY  - JOUR
AU  - N. I. Abarenkova
AU  - N. M. Bogoliubov
TI  - Solution of the integrable model of the spinor Bose--Einstein condensate with the dipole-dipole interaction
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 5
EP  - 27
VL  - 374
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a0/
LA  - ru
ID  - ZNSL_2010_374_a0
ER  - 
%0 Journal Article
%A N. I. Abarenkova
%A N. M. Bogoliubov
%T Solution of the integrable model of the spinor Bose--Einstein condensate with the dipole-dipole interaction
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 5-27
%V 374
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a0/
%G ru
%F ZNSL_2010_374_a0
N. I. Abarenkova; N. M. Bogoliubov. Solution of the integrable model of the spinor Bose--Einstein condensate with the dipole-dipole interaction. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 5-27. http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a0/