@article{ZNSL_2009_373_a7,
author = {E. E. Goryachko},
title = {The simplicity of the branching of representations of the groups $\mathrm{GL}(n,q)$ under the parabolic restrictions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {124--133},
year = {2009},
volume = {373},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a7/}
}
TY - JOUR
AU - E. E. Goryachko
TI - The simplicity of the branching of representations of the groups $\mathrm{GL}(n,q)$ under the parabolic restrictions
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2009
SP - 124
EP - 133
VL - 373
UR - http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a7/
LA - ru
ID - ZNSL_2009_373_a7
ER -
E. E. Goryachko. The simplicity of the branching of representations of the groups $\mathrm{GL}(n,q)$ under the parabolic restrictions. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 124-133. http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a7/
[1] A. M. Vershik, S. V. Kerov, “Ob odnoi beskonechnomernoi gruppe nad konechnym polem”, Funkts. anal. i ego pril., 32:3 (1998), 3–10 | DOI | MR | Zbl
[2] A. M. Vershik, A. Yu. Okunkov, “Novyi podkhod k teorii predstavlenii simmetricheskikh grupp. II”, Zap. nauchn. semin. POMI, 307, 2004, 57–98 | MR | Zbl
[3] E. E. Goryachko, “Prostota vetvleniya osnovnoi serii predstavlenii grupp $\mathrm{GL}(n,q)$ pri parabolicheskikh ogranicheniyakh”, Zap. nauchn. semin. POMI, 331, 2006, 43–59 | MR | Zbl
[4] A. Aizenbud, D. Gourevitch, Multiplicity free Jacquet modules, arxiv: 0910.3659v1[math.RT]
[5] I. M. Gelfand, D. A. Kajdan, “Representations of the group $\mathrm{GL}(n,K)$ where $K$ is a local field”, Lie Groups and Their Representations, Akad. Kiadó, Budapest, 1975, 95–118 | MR
[6] A. M. Vershik, S. V. Kerov, “Four drafts on the representation theory of the group of infinite matrices over a finite field”, Zap. nauchn. semin. POMI, 344, 2007, 5–36 | MR
[7] A. V. Zelevinsky, Representations of Finite Classical Groups. A Hopf Algebra Approach, Lect. Notes Math., 869, 1981 | MR | Zbl