@article{ZNSL_2009_373_a6,
author = {V. Gerdt and Yu. Palii and A. Khvedelidze},
title = {On the ring of local invariants for a~pair of the entangled $q$-bits},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {104--123},
year = {2009},
volume = {373},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a6/}
}
V. Gerdt; Yu. Palii; A. Khvedelidze. On the ring of local invariants for a pair of the entangled $q$-bits. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 104-123. http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a6/
[1] A. Einstein, B. Podolsky, N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?”, Phys. Rev., 47 (1935), 777–780 | DOI | Zbl
[2] J. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, Cambridge, 1987 | MR | Zbl
[3] A. Aspect, “Bell's theorem: the naive view of an experimentalist”, Quantum [Un]speakables: From Bell to Quantum Information, eds. R. A. Bertlmann, A. Zeilinger, Springer Verlag, Berlin, 2002, 119–153 | DOI | MR
[4] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Camridge University Press, 2000 ; M. Nilsen, I. Chang, Kvantovye vychisleniya i kvantovaya informatsiya, Mir, M., 2006 | MR | Zbl
[5] V. Vedral, Introduction to Quantum Information Science, Oxford University Press, New York, 2006 | Zbl
[6] I. Bengtsson, K. Źyczkowski, Geometry of Quantum States. An Introduction to Quantum Entanglement, Cambridge University Press, 2006 | MR | Zbl
[7] R. F. Werner, “Quantum states with Einstein–Podolski–Rosen correlations admitting a hidden-variable model”, Phys. Rev. A, 40 (1989), 4277–4281 | DOI
[8] J. Schlienz, G. Mahler, “Description of entanglement”, Phys. Rev. A, 52 (1995), 4396–4404 | DOI
[9] N. Linden, S. Popescu, “On multi-particle entanglement”, Fortschr. Phys., 46 (1998), 567–578 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[10] H. Weyl, The Classical Groups: Their Invariants and Representations, Princeton University Press, 1939 ; G. Veil, Klassicheskie gruppy, ikh invarianty i predstavleniya, IL, M., 1947 | MR
[11] V. L. Popov, E. B. Vinberg, “Invariant theory”, Algebraic Geometry IV, Encycl. Math. Sci., 55, Springer-Verlag, 1994, 123–273
[12] M. Kus, K. Zyczkowski, “Geometry of entangled states”, Phys. Rev. A, 63 (2001), 032307, 13 pp. | DOI | MR
[13] M. Grassl, M. Rötteler, T. Beth, “Computing local invariants of qubit systems”, Phys. Rev. A, 58 (1998), 1853–1856 | DOI | MR
[14] R. C. King, T. A. Welsh, P. D. Jarvis, “The mixed two-qubit system and the structure of its ring of local invariants”, J. Phys. A: Math. Theor., 40 (2007), 10083–10108 | DOI | MR | Zbl
[15] J. von Neumann, “Warscheinlichtkeitstheoritischer aufbau der Quantemechanik”, Göttingen Nachrichten, 1927, 245–272 | Zbl
[16] L. D. Landau, “Das dämpfungsproblem in der Wellenmechanik”, Zeitschrift für Physik, 45 (1927), 430–441 | DOI | Zbl
[17] K. Blum, Density Matrix. Theory and Applications, Plenum Press, New York, 1981 ; K. Blum, Teoriya matritsy plotnosti i ee prilozheniya, Mir, M., 1983 | MR | Zbl | MR
[18] F. T. Hioe, J. H. Eberly, “$N$-Level Coherence Vector and Higher Conservation Laws in Quantum Optics and Quantum Mechanics”, Phys. Rev. Lett., 47 (1981), 838–841 | DOI | MR
[19] U. Fano, “Description of states in quantum mechanics by density matrix and operator techniques”, Rev. Mod. Phys., 29 (1957), 74–93 | DOI | MR | Zbl
[20] U. Fano, “Pairs of two-level systems”, Rev. Mod. Phys., 55 (1983), 855–874 | DOI
[21] J.-G. Luque, J.-Y. Thibon, “The polynomial invariants of four qubits”, Phys. Rev. A, 63 (2003), 042303, 5 pp. ; “Algebraic invariants of five qubits”, J. Phys. A: Math. Gen., 39 (2005), 371–377 | DOI | MR | DOI | MR
[22] A. Miyake, “Classification of multipartite entangled states by multidimensional determinants”, Phys. Rev. A, 67 (2003), 012108, 10 pp. | DOI | MR
[23] B. Sturmfels, Algorithms in Invariant Theory, Springer-Verlag, Wien, 1993 | MR | Zbl
[24] H. Derksen, G. Kemper, Computational Invariant Theory, Encyclopedia of Mathematical Sciences, 130, Springer-Verlag, Berlin, 2002 | DOI | MR | Zbl
[25] B. Buchberger, “Gröbner bases – an algorithmic method in polynomial ideal theory”, Multidimensional Systems Theory, ed. N. K. Bose, D. Reidel, Dordrecht, 1985, 184–232 ; Kompyuternaya algebra. Simvolnye i algebraicheskie vychisleniya, Mir, M., 1986 | DOI | Zbl | MR
[26] M. Hochster, J. Roberts, “Rings of invariants of reductive groups acting on regular rings are Cohen–Macaulay”, Advances in Mathematics, 13 (1974), 125–175 | DOI | MR
[27] G. Kimura, “The Bloch vector for N-level systems”, Phys. Lett. A, 314 (2003), 339–349 | DOI | MR | Zbl
[28] M. S. Byrd, N. Khaneja, “Characterization of the positivity of the density matrix in terms of the coherence vector representation”, Phys. Rev. A, 68 (2003), 062322, 13 pp. | DOI | MR
[29] S. Kryszewski, M. Zachcial, “Positivity of the $N\times N$ density matrix expressed in terms of polarization operators”, J. Phys. A: Math. Theor., 39 (2006), 5921–5931 | DOI | MR | Zbl
[30] E. B. Vinberg, Kurs algebry, 3-e izd., Izdatelstvo “Faktorial Press”, M., 2002
[31] B. R. Judd, W. Miller (Jr.), J. Patera, P. Winternitz, “Complete set of commuting operators and $O(3)$ scalars in the enveloping algebra of $SU(3)$\”, J. Math. Phys., 15 (1974), 1787–1799 | DOI | MR | Zbl
[32] C. Quesne, “$SU(2)\otimes SU(2)$ scalars in the enveloping algebra of $SU(4)$”, J. Math. Phys., 17 (1976), 1452–1467 | DOI | MR