On the ring of local invariants for a~pair of the entangled $q$-bits
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 104-123

Voir la notice de l'article provenant de la source Math-Net.Ru

The entanglement characteristics of two $q$-bits are encoded in the invariants of the adjoint action of the group $\mathrm{SU}(2)\otimes\mathrm{SU}(2)$ on the space of the density matrices $\mathfrak P_+$, i.e., space of $4\times4$ non-negative Hermitian matrices. The corresponding ring $\mathbb C[\mathfrak P_+]^{\mathrm{SU}(2)\otimes\mathrm{SU}(2)}$ in elements of the density matrix is studied. The special integrity basis for $\mathbb C[\mathfrak P_+]^{\mathrm{SU}(2)\otimes\mathrm{SU}(2)}$ is described and constraints on its elements due to the semi-definiteness of the density matrix are given explicitly in the form of inequalities. This basis has the property that only a minimal number of primary invariants of degree 2, 3 and one lowest degree 4 secondary invariant that appear in the Hironaka decomposition of $\mathbb C[\mathfrak P_+]^{\mathrm{SU}(2)\otimes\mathrm{SU}(2)}$ are subject to the polynomial inequalities. Bibl. – 32 titles.
@article{ZNSL_2009_373_a6,
     author = {V. Gerdt and Yu. Palii and A. Khvedelidze},
     title = {On the ring of local invariants for a~pair of the entangled $q$-bits},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {104--123},
     publisher = {mathdoc},
     volume = {373},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a6/}
}
TY  - JOUR
AU  - V. Gerdt
AU  - Yu. Palii
AU  - A. Khvedelidze
TI  - On the ring of local invariants for a~pair of the entangled $q$-bits
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 104
EP  - 123
VL  - 373
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a6/
LA  - ru
ID  - ZNSL_2009_373_a6
ER  - 
%0 Journal Article
%A V. Gerdt
%A Yu. Palii
%A A. Khvedelidze
%T On the ring of local invariants for a~pair of the entangled $q$-bits
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 104-123
%V 373
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a6/
%G ru
%F ZNSL_2009_373_a6
V. Gerdt; Yu. Palii; A. Khvedelidze. On the ring of local invariants for a~pair of the entangled $q$-bits. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 104-123. http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a6/