Strong non-noetherity of polynomial reduction
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 73-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is well known result by A. Reeves and B. Sturmfels, that the reduction modulo a marked set of polynomials is Noetherian if and only if the marking is induced from an admissible term order. For finite sets of polynomials with non-admissible order, there is a constructive proof of existence of infinite reduction sequence, although the finite one is might still be possible. On the base of our specialized software for combinatorics of monomial orders, we have found some examples, for which there is not any finite reduction sequence. This is what we call “strong” non-noetherity. Bibl. – 3 titles.
@article{ZNSL_2009_373_a3,
     author = {N. Vassiliev and D. Pavlov},
     title = {Strong non-noetherity of polynomial reduction},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {73--76},
     year = {2009},
     volume = {373},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a3/}
}
TY  - JOUR
AU  - N. Vassiliev
AU  - D. Pavlov
TI  - Strong non-noetherity of polynomial reduction
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 73
EP  - 76
VL  - 373
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a3/
LA  - en
ID  - ZNSL_2009_373_a3
ER  - 
%0 Journal Article
%A N. Vassiliev
%A D. Pavlov
%T Strong non-noetherity of polynomial reduction
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 73-76
%V 373
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a3/
%G en
%F ZNSL_2009_373_a3
N. Vassiliev; D. Pavlov. Strong non-noetherity of polynomial reduction. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 73-76. http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a3/

[1] A. Reeves, B. Sturmfels, “A note on polynomial reduction”, J. Symb. Comput., 16 (1993), 273–277 | DOI | MR | Zbl

[2] D. Cox, J. Little, D. O'Shea, Ideals, Varieties, and Algorithms, Third Edition, Springer, 2007 | MR | Zbl

[3] J. C. Faugère, P. Gianni, D. Lazard, T. Mora, “Efficient computation of zero-dimensional Gröebner bases by change of ordering”, J. Symb. Comput., 16:4 (1993), 329–344 | DOI | MR | Zbl