Calculations in exceptional groups over rings
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 48-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present paper we discuss a major project, whose goal is to develop theoretical background and working algorithms for calculations in exceptional Chevalley groups over commutative rings. We recall some basic facts concerning calculations in groups over fields, and indicate complications arising in the ring case. Elementary calculations as such are no longer conclusive. We describe basics of calculating with elements of exceptional groups in their minimal representations, which allow to reduce calculations in the group itself to calculations in its subgroups of smaller rank. For all practical matters such calculations are much more efficient, than localisation methods. Bibl. – 147 titles.
@article{ZNSL_2009_373_a2,
     author = {N. Vavilov and A. Luzgarev and A. Stepanov},
     title = {Calculations in exceptional groups over rings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {48--72},
     year = {2009},
     volume = {373},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a2/}
}
TY  - JOUR
AU  - N. Vavilov
AU  - A. Luzgarev
AU  - A. Stepanov
TI  - Calculations in exceptional groups over rings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 48
EP  - 72
VL  - 373
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a2/
LA  - en
ID  - ZNSL_2009_373_a2
ER  - 
%0 Journal Article
%A N. Vavilov
%A A. Luzgarev
%A A. Stepanov
%T Calculations in exceptional groups over rings
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 48-72
%V 373
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a2/
%G en
%F ZNSL_2009_373_a2
N. Vavilov; A. Luzgarev; A. Stepanov. Calculations in exceptional groups over rings. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 48-72. http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a2/

[1] E. Abe, “Chevalley groups over local rings”, Tôhoku Math. J., 21:3 (1969), 474–494 | DOI | MR | Zbl

[2] E. Abe, “Coverings of twisted Chevalley groups over commutative rings”, Sci. Repts. Tokyo Kyoiku Daigaku, 13 (1977), 194–218 | MR | Zbl

[3] E. Abe, “Whitehead groups of Chevalley groups over polynomial rings”, Commun. Algebra, 11:12 (1983), 1271–1307 | DOI | MR | Zbl

[4] E. Abe, Whitehead groups of Chevalley groups over Laurent polynomial rings, Preprint, Univ. Tsukuba, 1988, 14 pp.

[5] E. Abe, “Chevalley groups over commutative rings”, Proc. Conf. Radical Theory, Sendai, 1988, 1–23 | MR | Zbl

[6] E. Abe, “Normal subgroups of Chevalley groups over commutative rings”, Contemp. Math., 83 (1989), 1–17 | DOI | MR | Zbl

[7] E. Abe, “Automorphisms of Chevalley groups over commutative rings”, St.-Petersburg Math. J., 5:2 (1993), 74–90 | MR | Zbl

[8] E. Abe, “Chevalley groups over commutative rings. Normal subgroups and automorphisms”, Contemp. Math., 1995, 13–23 | DOI | MR | Zbl

[9] E. Abe, J. Hurley, “Centers of Chevalley groups over commutative rings”, Comm. Algebra, 16:1 (1988), 57–74 | DOI | MR | Zbl

[10] E. Abe, J. Morita, “Some Tits systems with affine Weyl groups in Chevalley groups over Dedekind domains”, J. Algebra, 115:2 (1988), 450–465 | DOI | MR | Zbl

[11] E. Abe, K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 28:1 (1976), 185–198 | DOI | MR | Zbl

[12] S. I. Adian, J. Mennicke, “Bounded generation of $\mathrm{SL}_n(\mathbb Z)$”, Int. J. ALgebra Comput., 2:4 (1992), 357–365 | DOI | MR | Zbl

[13] M. Aschbacher, “The 27-dimensional module for $\mathrm E_6$. I”, Invent. Math., 89:1 (1987), 159–195 ; “II”, J. London Math. Soc., 37 (1988), 275–293 ; “III”, Trans. Amer. Math. Soc., 321 (1990), 45–84 ; “IV”, J. Algebra, 191 (1991), 23–39 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR

[14] M. Aschbacher, “Some multilinear forms with large isometry groups”, Geom. dedic., 25:1–3 (1988), 417–465 | MR | Zbl

[15] J. C. Baez, “The octonions”, Bull. Amer. Math. Soc., 39 (2002), 145–205 | DOI | MR | Zbl

[16] A. Bak, “Non-abelian $\mathrm K$-theory: the nilpotent class of $\mathrm K_1$ and general stability”, $K$-Theory, 4 (1991), 363–397 | DOI | MR | Zbl

[17] A. Bak, R. Hazrat, N. Vavilov, “Localization-completion strikes again: relative $\mathrm K_1$ is nilpotent by abelian”, J. Pure Appl. Algebra, 213 (2009), 1075–1085 | DOI | MR | Zbl

[18] A. Bak, N. Vavilov, “Normality of the elementary subgroup functors”, Math. Proc. Cambridge Philos. Soc., 118:1 (1995), 35–47 | DOI | MR | Zbl

[19] H. Bass, J. Milnor, J.-P. Serre, “Solution of the congruence subgroup problem for $\mathrm{SL}_n$ $(n\ge3)$ and $\mathrm{Sp}_{2n}$ $(n\ge2)$”, Publ. Math. Inst. Hautes Et. Sci., 33 (1967), 59–137 | DOI | MR | Zbl

[20] A. Borel, “Properties and linear representations of Chevalley groups”, Seminar on algebraic groups and related finite groups, Springer-Verlag, Berlin et al., 1970, 1–55 | DOI | MR

[21] W. Bosma, J. Cannon, C. Playoust, “The Magma algebra system. I. The user language”, J. Symbol. Comput., 24:3–4 (1997), 235–265 | DOI | MR | Zbl

[22] E. I. Bunina, Automorphisms of adjoint Chevalley groups of types $\mathrm A_l$, $\mathrm D_l$, $\mathrm E_l$ over local rings, , 2007, 20 pp. arxiv: math/0702046

[23] E.I. Bunina,, Automorphisms of Chevalley groups of type $\mathrm F_4$ over local rings with 1/2, , 2009, 23 pp. arxiv: 0907.5592[math.GR]

[24] D. Carter, G. Keller, “Bounded elementary generation of $\mathrm{SL}_n({\mathcal O})$”, Amer. J. Math., 105 (1983), 673–687 | DOI | MR | Zbl

[25] D. Carter, G. Keller, “Elementary expressions for unimodular matrices”, Commun. Algebra, 12 (1984), 379–389 | DOI | MR | Zbl

[26] R. Carter, Simple groups of Lie type, Wiley, London et al., 1972 | MR | Zbl

[27] R. W. Carter, Chen Yu, “Automorphisms of affine Kac–Moody groups and related Chevalley groups over rings”, J. Algebra, 155 (1993), 44–94 | DOI | MR | Zbl

[28] B. Chang, “Generators of Chevalley groups over $\mathbb Z$”, Can. J. Math., 38:2 (1986), 387–396 | DOI | MR | Zbl

[29] Chen Yu, “Isomorphic Chevalley groups over integral domains”, Rend. Sem. Mat. Univ. Padova, 92 (1994), 231–237 | MR | Zbl

[30] Chen Yu, “On representations of elementary subgroups of Chevalley groups over algebras”, Proc. Amer. Math. Soc., 123:8 (1995), 2357–2361 | DOI | MR | Zbl

[31] Chen Yu, “Automorphisms of simple Chevalley groups over $\mathbb Q$-algebras”, Tôhoku Math. J., 348 (1995), 81–97 | DOI | MR

[32] Chen Yu, “Isomorphisms of adjoint Chevalley groups over integral domains”, Trans. Amer. Math. Soc., 348:2 (1996), 521–541 | DOI | MR | Zbl

[33] Chen Yu, “Isomorphisms of Chevalley groups over algebras”, J. Algebra, 226 (2000), 719–741 | DOI | MR | Zbl

[34] A. M. Cohen, R. H. Cushman, “Gröbner bases and standard monomial theory”, Computational algebraic geometry, Progress in Mathematics, 109, Birkhäuser, 1993, 41–60 | MR | Zbl

[35] A. M. Cohen, W. A. de Graaf, L. Rónyai, “Lie algebraic computation”, Comput. Physics Comm., 97 (1996), 53–62 | DOI | MR | Zbl

[36] A. M. Cohen, W. A. de Graaf, L. Rónyai, “Computations in finite-dimensional Lie algebras”, Discrete Math. Theoretical Comput. Sci., 1 (1997), 129–138 | MR | Zbl

[37] A. M. Cohen, S. H. Murray, Algorithm for Lang's theorem, , 2005, 29 pp. arxiv: math.GR/0506068

[38] A. M. Cohen, S. H. Murray, D. E. Taylor, “Computing in groups of Lie type”, Math. Comput., 73 (2004), 1477–1498 | DOI | MR | Zbl

[39] A. M. Cohen, S. Haller, S. H. Murray, Computing in unipotent and reductive algebraic groups, 2006, 22 pp.

[40] B. N. Cooperstein, “The fifty-six-dimensional module for $\mathrm E_7$. I. A form for $\mathrm E_7$”, J. Algebra, 173 (1995), 361–389 | DOI | MR | Zbl

[41] D. L. Costa, G. E. Keller, “On the normal subgroups of $\mathrm G_2(A)$”, Trans. Amer. Math. Soc., 351:12 (1999), 5051–5088 | DOI | MR | Zbl

[42] J. Faulkner, “Hopf duals, algebraic groups and Jordan pairs”, Jour. Amer. Math. Soc., 279:1 (2004), 91–120 | MR | Zbl

[43] The GAP group, Aachen, St. Andrews, GAP – Groups, Algorithms and Programming, Version 4.1, , 1999 http://gap-system.org

[44] M. Geck, G. Hiss, F. Lübeck, G. Malle, G. Pfeiffer, “Chevie – a system for computing and processing generic character tables”, Appl. Algebra Engrg. Comm. Comput., 7:3 (1996), 175–210 | DOI | MR | Zbl

[45] P. Gilkey, G. M. Seitz, “Some representations of exceptional Lie algebras”, Geom. Dedicata, 25:1–3 (1988), 407–416 | MR | Zbl

[46] D. R. Grayson, “$\mathrm{SK}_1$ of an interesting principal ideal domain”, J. Pure Appl. Algebra, 20 (1981), 157–163 | DOI | MR | Zbl

[47] R. I. Griess, “A Moufang loop, the exceptional Jordan algebra and a cubic form in 27 variables”, J. Algebra, 131 (1990), 281–293 | DOI | MR | Zbl

[48] S. Haller, Computing Galois cohomology and forms of linear algebraic groups, 2005, 91 pp. | MR

[49] R. Hazrat, “Dimension theory and non-stable $\mathrm K_1$ of quadratic module”, $K$-Theory, 27 (2002), 293–327 | DOI | MR

[50] R. Hazrat, V. Petrov, N. Vavilov, “Relative subgroups in Chevalley groups”, J. K-Theory, 2009 (to appear) , 13 pp. | MR

[51] R. Hazrat, N. Vavilov, “$\mathrm K_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl

[52] R. Hazrat, N. Vavilov, “Bak's work on $\mathrm K$-theory of rings”, with an appendix by Max Karoubi, J. K-Theory, 4:1 (2009), 1–65 | DOI | MR | Zbl

[53] R. Hazrat, A. Stepanov, N. Vavilov, Z. Zhang, “Relative standard commutator formula: the case of Chevalley groups”, J. Pure Appl. Algebra, 2010 (to appear)

[54] D. Holt, B. Eick, E. A. O'Brien, Handbook of computational group theory, Chapman Hall, Boca Raton, FL, 2005 | MR | Zbl

[55] R. B. Howlett, L. J. Rylands, D. E. Taylor, “Matrix generators for exceptional groups of Lie type”, J. Symbol. Comput., 4 (2001), 429–445 | DOI | MR | Zbl

[56] F. Ischebeck, “Hauptidealringe mit nichttrivialer $\mathrm{SK}_1$-Gruppe”, Arch. Math., 35 (1980), 138–139 | DOI | MR | Zbl

[57] J. C. Jantzen, Representations of algebraic groups, Academic Press, N.Y., 1987 | MR | Zbl

[58] W. van der Kallen, “Another presentation for Steinberg groups”, Indag. Math., 39:4 (1977), 304–312 | MR

[59] W. van der Kallen, “$\mathrm{SL}_3(\mathbb C[x])$ does not have bounded word length”, Lecture Notes Math., 966, Springer, 1982, 357–361 | DOI | MR

[60] W. van der Kallen, M. R. Stein, “On the Schur multiplier of Steinberg and Chevalley groups over commutative rings”, Math. Z., 155 (1977), 83–94 | DOI | MR | Zbl

[61] V. I. Kopeiko, “The stabilization of symplectic groups over a polynomial ring”, Math. U.S.S.R. Sbornik, 34:5 (1978), 655–669 | DOI | MR

[62] B. Kostant, “Groups over $\mathbb Z$”, Proc. Symp. Pure Math., 9 (1966), 90–98 | DOI | MR | Zbl

[63] M. A. A. van Leeuwen, A. M. Cohen, B. Lisser, Lie manual. 1, CWI/CAN, Amsterdam, 1992; http://young.sp2mi.univ-poitiers.fr/marc/Lie

[64] H. W. Lenstra, “Grothendieck groups of Abelian group rings”, J. Pure Appl. Algebra, 20 (1981), 173–193 | DOI | MR | Zbl

[65] W. Lichtenstein, “A system of quadrics describing the orbit of the highest weight vector”, Proc. Amer. Math. Soc., 84:4 (1982), 605–608 | DOI | MR | Zbl

[66] O. Loos, “On algebraic groups defined by Jordan pairs”, Jour. Amer. Math. Soc., 74 (1979), 23–66 | MR | Zbl

[67] J. Lurie, “On simply laced Lie algebras and their minuscule representations”, Comment. Math. Helv., 166 (2001), 515–575 | DOI | MR

[68] A. Yu. Luzgarev, “On overgroups of $\mathrm E(\mathrm E_6,R)$ and $\mathrm E(\mathrm E_7,R)$ in their minimal representations”, J. Math. Sci., 319 (2004), 216–243 | MR | Zbl

[69] A. Yu. Luzgarev, “Overgroups of $F_4$ in $E_6$”, St.-Petersburg Math. J., 20:6 (2008), 148–185 | MR

[70] A. Yu. Luzgarev, “Characteristic free quartic invariants for $G(\mathrm E_7,R)$”, Russian Math. Doklady, 2010 (to appear)

[71] A. Yu. Luzgarev, “Equations defining the highest weight orbit in the adjoint representation”, St.-Petersburg Math. J., 2009 (to appear) | MR | Zbl

[72] A. Luzgarev, V. Petrov, N. Vavilov, “Explicit equations on orbit of the highest weight vector”, 2009 (to appear) | Zbl

[73] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 1–62 | MR | Zbl

[74] J. S. Milne, Algebraic groups and arithmetic groups, , 2006, 219 pp. http://www.jmilne.org/math/

[75] J. S. Milne, Semisimple Lie algebras, algebraic groups and tensor categories, , 2007, 37 pp. http://www.jmilne.org/math/

[76] I. Mirković, K. Vilonen, “Geometric Langlands duality and representations of algebraic groups over commutative rings”, Ann. Math., 165:1 (2007), 1–49 | DOI | MR

[77] D. W. Morris, “Bounded generation of $\mathrm{SL}(n,A)$ (after D. Carter, G. Keller, and E. Paige)”, New York J. Math., 13 (2007), 383–421 | MR | Zbl

[78] S. Nikolenko, N. Semenov, Chow ring structure made simple, , 2006, 17 pp. arxiv: math.AG/0606335

[79] S. Nikolenko, N. Semenov, K. Zainoulline, “Motivic decomposition of anisotropic varieties of type $\mathrm F_4$ into generalised Rost motives”, J. K-Theory, 2009 (to appear) | MR

[80] H. Park, C. Woodburn, “An algorithmic proof of Suslin's stability theorem for polynomial rings”, J. Algebra, 178:1 (1995), 277–298 | DOI | MR | Zbl

[81] V. A. Petrov, A. K. Stavrova, “Elementary subgroups of isotropic reductive groups”, St.-Petersburg Math. J., 20:4 (2008), 160–188 | MR

[82] V. Petrov, A. Stavrova, “Tits indices over semilocal rings”, J. Algebra, 2010 (to appear)

[83] V. Petrov, A. Stavrova, “Jordan–Kantor pairs and algebraic groups”, J. Algebra, 2010 (to appear)

[84] V. Petrov, A. Stavrova, “Reductive groups as automorphism groups of algebraic structures: a unified approach”, 2010 (to appear)

[85] I. M. Pevzner, Root elements in exceptional groups, Ph. D. Thesis, St.-Petesburg State Univ., 2008, 149 pp. (in Russian)

[86] I. M. Pevzner, Geometry of root elements in groups of type $\mathrm E_6$, Preprint No 12, POMI, 2008, 37 pp. (in Russian)

[87] I. M. Pevzner, The width of groups of type $\mathrm E_6$ with respect to root elements. I, Preprint No 13, POMI, 2008, 40 pp. (in Russian)

[88] E. B. Plotkin, “Surjective stability of $\mathrm K_1$-functor for some exceptional Chevalley groups”, J. Soviet Math., 198 (1991), 65–88 | MR | Zbl

[89] E. Plotkin, “Stability theorems for $\mathrm K$-functors for Chevalley groups”, Proc. Conf. Non-Associative Algebras and Related Topics, Hiroshima – 1990, World Sci., London et al., 1991, 203–217 | MR | Zbl

[90] E. Plotkin, “On the stability of $\mathrm K_1$-functor for Chevalley groups of type $\mathrm E_7$”, J. Algebra, 210 (1998), 67–85 | DOI | MR | Zbl

[91] E. Plotkin, A. Semenov, N. Vavilov, “Visual basic representations: an atlas”, Internat. J. Algebra Comput., 8:1 (1998), 61–95 | DOI | MR | Zbl

[92] E. B. Plotkin, M. R. Stein, N. A. Vavilov, “Stability of $\mathrm K$-functors modeled on Chevalley groups, revisited” (to appear)

[93] A. J. E. Ryba, “Construction of some irreducible subgroups of $\mathrm E_8$ and $\mathrm E_6$”, LMS J. Comput. Math., 10 (2007), 329–340 | DOI | MR | Zbl

[94] A. J. E. Ryba, “Identification of matrix generators of a Chevalley group”, J. Algebra, 309 (2007), 484–496 | DOI | MR | Zbl

[95] N. Semenov, “Motivic construction of cohomological invariants” (to appear)

[96] C. S. Seshadri, “Geometry of $G/P$. I. Standard monomial theory for minuscule $P$”, C. P. Ramanujam: a tribute, Tata Press, Bombay, 1978, 207–239 | MR | Zbl

[97] A. Sivatsky, A. Stepanov, “On the word length of commutators in $\mathrm{GL}_n(R)$”, $K$-theory, 17 (1999), 295–302 | DOI | MR

[98] Y. Shalom, “Bounded generation and Kazhdan property (T)”, Inst. Hautes Études Sci. Publ. Math., 90 (1999), 145–168 | DOI | MR | Zbl

[99] Ch. Soulé, “Chevalley groups over polynomial rings”, Homological group theory (Durham, 1977), London Math. Soc. Lecture Notes, 36, 1979, 359–367 | MR | Zbl

[100] S. Splitthoff, “Finite presentability of Steinberg groups and related Chevalley groups”, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part II, Contemp. Math., 55, 1986, 635–687 | DOI | MR | Zbl

[101] T. A. Springer, F. D. Veldkamp, Octonions. Jordan algebras and exceptional groups, Springer, Berlin et al., 2000 | MR | Zbl

[102] A. Stavrova, “Normal structure of maximal parabolic subgroups in Chevalley groups over commutative rings”, Algebra Coll., 16:4 (2009), 631–648 | DOI | MR | Zbl

[103] A. Stavrova, Structure of isotropic reductive groups, Ph. D. Thesis, St.-Petesburg State Univ., 2009, 158 pp. (in Russian) | Zbl

[104] M. R. Stein, “Generators, relations and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93:4 (1971), 965–1004 | DOI | MR | Zbl

[105] M. R. Stein, “The Schur multipliers of $\mathrm{Sp}_6(\mathbb Z)$, $\mathrm{Spin}_8(\mathbb Z)$, $\mathrm{Spin}_7(\mathbb Z)$ and $\mathrm F_4(\mathbb Z)$”, Math. Ann., 215 (1975), 165–172 | DOI | MR | Zbl

[106] M. R. Stein, “Stability theorems for $\mathrm K_1$, $\mathrm K_2$ and related functors modeled on Chevalley groups”, Japan J. Math., 4:1 (1978), 77–108 | MR | Zbl

[107] R. Steinberg, “Générateurs, relations et revêtements des groupes algébriques”, Colloq. Théorie des groupes algébriques (Bruxelles, 1962), 113–127 | MR | Zbl

[108] R. Steinberg, Lectures on Chevalley groups, Yale Univ., New Haven, Conn., 1968 | MR | Zbl

[109] R. Steinberg, “Generators, relations and coverings of algebraic groups. II”, J. Algebra, 71 (1981), 527–543 | DOI | MR | Zbl

[110] R. Steinberg, “Some consequences of elementary relations of $\mathrm{SL}_n$”, Contemp. Math., 45 (1985), 335–350 | DOI | MR | Zbl

[111] A. Stepanov, “Free product subgroups between Chevalley groups $G(\Phi,F)$ and $G(\Phi,F[t])$”, J. Algebra, 2010 (to appear) | MR | Zbl

[112] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, $K$-Theory, 19 (2000), 109–153 | DOI | MR | Zbl

[113] A. Stepanov, N. Vavilov, “On the length of commutators in Chevalley groups”, Israel J. Math., 2009 (to appear)

[114] A. A. Suslin, “The structure of the special linear group over polynomial rings”, Math. USSR Izv., 11:2 (1977), 235–253 | DOI | MR

[115] A. A. Suslin, V. I. Kopeiko, “Quadratic modules and orthogonal groups over polynomial rings”, J. Sov. Math., 20:6 (1982), 2665–2691 | DOI | Zbl

[116] K. Suzuki, “Normality of the elementary subgroups of twisted Chevalley groups over commutative rings”, J. Algebra, 175:3 (1995), 526–536 | DOI | MR | Zbl

[117] G. Taddei, Schémas de Chevalley, Thèse, Demazure, fonctions représentatives et théorème de normalité, Univ. de Genève, 1985, 58 pp.

[118] G. Taddei, “Normalité des groupes élémentaire dans les groupes de Chevalley sur un anneau”, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part II, Contemp. Math., 55, 1986, 693–710 | DOI | MR | Zbl

[119] O. I. Tavgen, “Finite width of arithmetic subgroups of Chevalley groups of rank $\ge2$”, Soviet Math. Doklady, 41:1 (1990), 136–140 | MR | Zbl

[120] O. I. Tavgen, “Bounded generation of Chevalley groups over rings of $S$-integer algebraic numbers”, Izv. Acad. Sci. USSR, 54:1 (1990), 97–122 | MR | Zbl

[121] O. I. Tavgen, “Bounded generation of normal and twisted Chevalley groups over the rings of $S$-integers”, Contemp. Math., 131:1 (1992), 409–421 | DOI | MR | Zbl

[122] D. M. Testerman, “A construction of certain maximal subgroups of the algebraic groups $\mathrm E_6$ and $\mathrm F_4$”, Comm. Algebra, 17:4 (1989), 1003–1016 | DOI | MR | Zbl

[123] M. S. Tulenbaev, “Schur multiplier of the group of elementary matrices of finite order”, J. Sov. Math., 17:4 (1981), 2062–2067 | DOI | Zbl

[124] L. N. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 36:5 (1986), 219–230 | DOI | MR

[125] N. Vavilov, “Structure of Chevalley groups over commutative rings”, Nonassociative algebras and related topics, Proc. Conf. Nonassociative algebras and related topics (Hiroshima, 1990), World Scientific, London et al., 1991, 219–335 | MR | Zbl

[126] N. Vavilov, “A third look at weight diagrams”, Rendiconti del Seminario Matem. della Univ. di Padova, 204 (2000), 1–45 | MR

[127] N. A. Vavilov, “Do it yourself structure constants for Lie algebras of type $\mathrm E_l$”, J. Math. Sci., 120 (2004), 1513–1548 | DOI | MR

[128] N. A. Vavilov, “Can one see the signs of the structure constants?”, St.-Petersburg Math. J., 19:4 (2007), 34–68 | MR

[129] N. A. Vavilov, “Calculations in exceptional groups”, Vestnik Samara Univ. Natural Sciences, 2007, no. 7, 11–24 (in Russian)

[130] N. Vavilov, “An $\mathrm A_3$-proof of structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$”, Int. J. Algebra Comput., 17:5–6 (2007), 1283–1298 | DOI | MR | Zbl

[131] N. A. Vavilov, “Numerology of square equations”, St.-Petersburg Math. J., 20:4 (2008), 9–40 | MR

[132] N. A. Vavilov, “An $\mathrm A_3$-proof of structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$. II. The principal lemma”, St.-Petersburg Math. J., 2010 (to appear) | Zbl

[133] N. A. Vavilov, M. R. Gavrilovich, “An $\mathrm A_2$-proof of the structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$”, St.-Petersburg Math. J., 16:4 (2005), 649–672 | DOI | MR | Zbl

[134] N. A. Vavilov, M. R. Gavrilovich, S. I. Nikolenko, “Structure of Chevalley groups: the Proof from the Book”, J. Math. Sci., 330 (2006), 36–76 | MR | Zbl

[135] N. A. Vavilov, V. G. Kazakevich, “Yet another variation of decomposition of transvections”, Vestnik SPbGU Ser. 1, 2008, no. 4, 71–74 | Zbl

[136] N. A. Vavilov, A. Yu. Luzgarev, “Normaliser of Chevalley groups of type $\mathrm E_6$”, St.-Petersburg Math. J., 19:5 (2007), 35–62 | MR

[137] N. A. Vavilov, A. Yu. Luzgarev, “Normaliser of Chevalley groups of type $\mathrm E_7$”, St.-Petersburg Math. J., 2010 (to appear) | Zbl

[138] N. A. Vavilov, A. Yu. Luzgarev, “Chevalley group of type $\mathrm E_7$ in the 56-dimensional representation”, J. Math. Sci., 2010 (to appear) | Zbl

[139] N. A. Vavilov, A. Yu. Luzgarev, “An $\mathrm A_2$-proof of the structure theorems for Chevalley groups of type $\mathrm E_8$”, St.-Petersburg Math. J., 2010 (to appear) | Zbl

[140] N. A. Vavilov, A. Yu. Luzgarev, I. M. Pevzner, “Chevalley group of type $\mathrm E_6$ in the 27-dimensional representation”, J. Math. Sci., 338 (2006), 5–68 | MR | Zbl

[141] N. A. Vavilov, S. I. Nikolenko, “An $\mathrm A_2$-proof of the structure theorems for Chevalley groups of type $\mathrm F_4$”, St.-Petersburg Math. J., 20:4 (2008), 27–63 | MR

[142] N. Vavilov, E. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Applicandae Math., 45:1 (1996), 73–113 | DOI | MR | Zbl

[143] N. A. Vavilov, E. B. Plotkin, A. V. Stepanov, “Calculations in Chevalley groups over commutative rings”, Soviet Math. Dokl., 40:1 (1990), 145–147 | MR

[144] N. A. Vavilov, A. K. Stavrova, “Basic reductions in the description oif normal subgroups”, J. Math. Sci., 151:3 (2008), 2949–2960 | DOI

[145] N. A. Vavilov, A. V. Stepanov, “Overgroups of semisimple subgroups”, Vestnik Samara Univ. Natural Sciences, 2008, no. 3(62), 51–94 (in Russian) | MR

[146] W. C. Waterhouse, Introduction to affine group schemes, Springer-Verlag, N.Y. et al., 1979 | MR | Zbl | Zbl

[147] N. J. Wildberger, “A combinatorial construction for simply-laced Lie algebras”, Adv. Appl. Math., 30 (2003), 385–396 | DOI | MR | Zbl