@article{ZNSL_2009_373_a2,
author = {N. Vavilov and A. Luzgarev and A. Stepanov},
title = {Calculations in exceptional groups over rings},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {48--72},
year = {2009},
volume = {373},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a2/}
}
N. Vavilov; A. Luzgarev; A. Stepanov. Calculations in exceptional groups over rings. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 48-72. http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a2/
[1] E. Abe, “Chevalley groups over local rings”, Tôhoku Math. J., 21:3 (1969), 474–494 | DOI | MR | Zbl
[2] E. Abe, “Coverings of twisted Chevalley groups over commutative rings”, Sci. Repts. Tokyo Kyoiku Daigaku, 13 (1977), 194–218 | MR | Zbl
[3] E. Abe, “Whitehead groups of Chevalley groups over polynomial rings”, Commun. Algebra, 11:12 (1983), 1271–1307 | DOI | MR | Zbl
[4] E. Abe, Whitehead groups of Chevalley groups over Laurent polynomial rings, Preprint, Univ. Tsukuba, 1988, 14 pp.
[5] E. Abe, “Chevalley groups over commutative rings”, Proc. Conf. Radical Theory, Sendai, 1988, 1–23 | MR | Zbl
[6] E. Abe, “Normal subgroups of Chevalley groups over commutative rings”, Contemp. Math., 83 (1989), 1–17 | DOI | MR | Zbl
[7] E. Abe, “Automorphisms of Chevalley groups over commutative rings”, St.-Petersburg Math. J., 5:2 (1993), 74–90 | MR | Zbl
[8] E. Abe, “Chevalley groups over commutative rings. Normal subgroups and automorphisms”, Contemp. Math., 1995, 13–23 | DOI | MR | Zbl
[9] E. Abe, J. Hurley, “Centers of Chevalley groups over commutative rings”, Comm. Algebra, 16:1 (1988), 57–74 | DOI | MR | Zbl
[10] E. Abe, J. Morita, “Some Tits systems with affine Weyl groups in Chevalley groups over Dedekind domains”, J. Algebra, 115:2 (1988), 450–465 | DOI | MR | Zbl
[11] E. Abe, K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 28:1 (1976), 185–198 | DOI | MR | Zbl
[12] S. I. Adian, J. Mennicke, “Bounded generation of $\mathrm{SL}_n(\mathbb Z)$”, Int. J. ALgebra Comput., 2:4 (1992), 357–365 | DOI | MR | Zbl
[13] M. Aschbacher, “The 27-dimensional module for $\mathrm E_6$. I”, Invent. Math., 89:1 (1987), 159–195 ; “II”, J. London Math. Soc., 37 (1988), 275–293 ; “III”, Trans. Amer. Math. Soc., 321 (1990), 45–84 ; “IV”, J. Algebra, 191 (1991), 23–39 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR
[14] M. Aschbacher, “Some multilinear forms with large isometry groups”, Geom. dedic., 25:1–3 (1988), 417–465 | MR | Zbl
[15] J. C. Baez, “The octonions”, Bull. Amer. Math. Soc., 39 (2002), 145–205 | DOI | MR | Zbl
[16] A. Bak, “Non-abelian $\mathrm K$-theory: the nilpotent class of $\mathrm K_1$ and general stability”, $K$-Theory, 4 (1991), 363–397 | DOI | MR | Zbl
[17] A. Bak, R. Hazrat, N. Vavilov, “Localization-completion strikes again: relative $\mathrm K_1$ is nilpotent by abelian”, J. Pure Appl. Algebra, 213 (2009), 1075–1085 | DOI | MR | Zbl
[18] A. Bak, N. Vavilov, “Normality of the elementary subgroup functors”, Math. Proc. Cambridge Philos. Soc., 118:1 (1995), 35–47 | DOI | MR | Zbl
[19] H. Bass, J. Milnor, J.-P. Serre, “Solution of the congruence subgroup problem for $\mathrm{SL}_n$ $(n\ge3)$ and $\mathrm{Sp}_{2n}$ $(n\ge2)$”, Publ. Math. Inst. Hautes Et. Sci., 33 (1967), 59–137 | DOI | MR | Zbl
[20] A. Borel, “Properties and linear representations of Chevalley groups”, Seminar on algebraic groups and related finite groups, Springer-Verlag, Berlin et al., 1970, 1–55 | DOI | MR
[21] W. Bosma, J. Cannon, C. Playoust, “The Magma algebra system. I. The user language”, J. Symbol. Comput., 24:3–4 (1997), 235–265 | DOI | MR | Zbl
[22] E. I. Bunina, Automorphisms of adjoint Chevalley groups of types $\mathrm A_l$, $\mathrm D_l$, $\mathrm E_l$ over local rings, , 2007, 20 pp. arxiv: math/0702046
[23] E.I. Bunina,, Automorphisms of Chevalley groups of type $\mathrm F_4$ over local rings with 1/2, , 2009, 23 pp. arxiv: 0907.5592[math.GR]
[24] D. Carter, G. Keller, “Bounded elementary generation of $\mathrm{SL}_n({\mathcal O})$”, Amer. J. Math., 105 (1983), 673–687 | DOI | MR | Zbl
[25] D. Carter, G. Keller, “Elementary expressions for unimodular matrices”, Commun. Algebra, 12 (1984), 379–389 | DOI | MR | Zbl
[26] R. Carter, Simple groups of Lie type, Wiley, London et al., 1972 | MR | Zbl
[27] R. W. Carter, Chen Yu, “Automorphisms of affine Kac–Moody groups and related Chevalley groups over rings”, J. Algebra, 155 (1993), 44–94 | DOI | MR | Zbl
[28] B. Chang, “Generators of Chevalley groups over $\mathbb Z$”, Can. J. Math., 38:2 (1986), 387–396 | DOI | MR | Zbl
[29] Chen Yu, “Isomorphic Chevalley groups over integral domains”, Rend. Sem. Mat. Univ. Padova, 92 (1994), 231–237 | MR | Zbl
[30] Chen Yu, “On representations of elementary subgroups of Chevalley groups over algebras”, Proc. Amer. Math. Soc., 123:8 (1995), 2357–2361 | DOI | MR | Zbl
[31] Chen Yu, “Automorphisms of simple Chevalley groups over $\mathbb Q$-algebras”, Tôhoku Math. J., 348 (1995), 81–97 | DOI | MR
[32] Chen Yu, “Isomorphisms of adjoint Chevalley groups over integral domains”, Trans. Amer. Math. Soc., 348:2 (1996), 521–541 | DOI | MR | Zbl
[33] Chen Yu, “Isomorphisms of Chevalley groups over algebras”, J. Algebra, 226 (2000), 719–741 | DOI | MR | Zbl
[34] A. M. Cohen, R. H. Cushman, “Gröbner bases and standard monomial theory”, Computational algebraic geometry, Progress in Mathematics, 109, Birkhäuser, 1993, 41–60 | MR | Zbl
[35] A. M. Cohen, W. A. de Graaf, L. Rónyai, “Lie algebraic computation”, Comput. Physics Comm., 97 (1996), 53–62 | DOI | MR | Zbl
[36] A. M. Cohen, W. A. de Graaf, L. Rónyai, “Computations in finite-dimensional Lie algebras”, Discrete Math. Theoretical Comput. Sci., 1 (1997), 129–138 | MR | Zbl
[37] A. M. Cohen, S. H. Murray, Algorithm for Lang's theorem, , 2005, 29 pp. arxiv: math.GR/0506068
[38] A. M. Cohen, S. H. Murray, D. E. Taylor, “Computing in groups of Lie type”, Math. Comput., 73 (2004), 1477–1498 | DOI | MR | Zbl
[39] A. M. Cohen, S. Haller, S. H. Murray, Computing in unipotent and reductive algebraic groups, 2006, 22 pp.
[40] B. N. Cooperstein, “The fifty-six-dimensional module for $\mathrm E_7$. I. A form for $\mathrm E_7$”, J. Algebra, 173 (1995), 361–389 | DOI | MR | Zbl
[41] D. L. Costa, G. E. Keller, “On the normal subgroups of $\mathrm G_2(A)$”, Trans. Amer. Math. Soc., 351:12 (1999), 5051–5088 | DOI | MR | Zbl
[42] J. Faulkner, “Hopf duals, algebraic groups and Jordan pairs”, Jour. Amer. Math. Soc., 279:1 (2004), 91–120 | MR | Zbl
[43] The GAP group, Aachen, St. Andrews, GAP – Groups, Algorithms and Programming, Version 4.1, , 1999 http://gap-system.org
[44] M. Geck, G. Hiss, F. Lübeck, G. Malle, G. Pfeiffer, “Chevie – a system for computing and processing generic character tables”, Appl. Algebra Engrg. Comm. Comput., 7:3 (1996), 175–210 | DOI | MR | Zbl
[45] P. Gilkey, G. M. Seitz, “Some representations of exceptional Lie algebras”, Geom. Dedicata, 25:1–3 (1988), 407–416 | MR | Zbl
[46] D. R. Grayson, “$\mathrm{SK}_1$ of an interesting principal ideal domain”, J. Pure Appl. Algebra, 20 (1981), 157–163 | DOI | MR | Zbl
[47] R. I. Griess, “A Moufang loop, the exceptional Jordan algebra and a cubic form in 27 variables”, J. Algebra, 131 (1990), 281–293 | DOI | MR | Zbl
[48] S. Haller, Computing Galois cohomology and forms of linear algebraic groups, 2005, 91 pp. | MR
[49] R. Hazrat, “Dimension theory and non-stable $\mathrm K_1$ of quadratic module”, $K$-Theory, 27 (2002), 293–327 | DOI | MR
[50] R. Hazrat, V. Petrov, N. Vavilov, “Relative subgroups in Chevalley groups”, J. K-Theory, 2009 (to appear) , 13 pp. | MR
[51] R. Hazrat, N. Vavilov, “$\mathrm K_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl
[52] R. Hazrat, N. Vavilov, “Bak's work on $\mathrm K$-theory of rings”, with an appendix by Max Karoubi, J. K-Theory, 4:1 (2009), 1–65 | DOI | MR | Zbl
[53] R. Hazrat, A. Stepanov, N. Vavilov, Z. Zhang, “Relative standard commutator formula: the case of Chevalley groups”, J. Pure Appl. Algebra, 2010 (to appear)
[54] D. Holt, B. Eick, E. A. O'Brien, Handbook of computational group theory, Chapman Hall, Boca Raton, FL, 2005 | MR | Zbl
[55] R. B. Howlett, L. J. Rylands, D. E. Taylor, “Matrix generators for exceptional groups of Lie type”, J. Symbol. Comput., 4 (2001), 429–445 | DOI | MR | Zbl
[56] F. Ischebeck, “Hauptidealringe mit nichttrivialer $\mathrm{SK}_1$-Gruppe”, Arch. Math., 35 (1980), 138–139 | DOI | MR | Zbl
[57] J. C. Jantzen, Representations of algebraic groups, Academic Press, N.Y., 1987 | MR | Zbl
[58] W. van der Kallen, “Another presentation for Steinberg groups”, Indag. Math., 39:4 (1977), 304–312 | MR
[59] W. van der Kallen, “$\mathrm{SL}_3(\mathbb C[x])$ does not have bounded word length”, Lecture Notes Math., 966, Springer, 1982, 357–361 | DOI | MR
[60] W. van der Kallen, M. R. Stein, “On the Schur multiplier of Steinberg and Chevalley groups over commutative rings”, Math. Z., 155 (1977), 83–94 | DOI | MR | Zbl
[61] V. I. Kopeiko, “The stabilization of symplectic groups over a polynomial ring”, Math. U.S.S.R. Sbornik, 34:5 (1978), 655–669 | DOI | MR
[62] B. Kostant, “Groups over $\mathbb Z$”, Proc. Symp. Pure Math., 9 (1966), 90–98 | DOI | MR | Zbl
[63] M. A. A. van Leeuwen, A. M. Cohen, B. Lisser, Lie manual. 1, CWI/CAN, Amsterdam, 1992; http://young.sp2mi.univ-poitiers.fr/marc/Lie
[64] H. W. Lenstra, “Grothendieck groups of Abelian group rings”, J. Pure Appl. Algebra, 20 (1981), 173–193 | DOI | MR | Zbl
[65] W. Lichtenstein, “A system of quadrics describing the orbit of the highest weight vector”, Proc. Amer. Math. Soc., 84:4 (1982), 605–608 | DOI | MR | Zbl
[66] O. Loos, “On algebraic groups defined by Jordan pairs”, Jour. Amer. Math. Soc., 74 (1979), 23–66 | MR | Zbl
[67] J. Lurie, “On simply laced Lie algebras and their minuscule representations”, Comment. Math. Helv., 166 (2001), 515–575 | DOI | MR
[68] A. Yu. Luzgarev, “On overgroups of $\mathrm E(\mathrm E_6,R)$ and $\mathrm E(\mathrm E_7,R)$ in their minimal representations”, J. Math. Sci., 319 (2004), 216–243 | MR | Zbl
[69] A. Yu. Luzgarev, “Overgroups of $F_4$ in $E_6$”, St.-Petersburg Math. J., 20:6 (2008), 148–185 | MR
[70] A. Yu. Luzgarev, “Characteristic free quartic invariants for $G(\mathrm E_7,R)$”, Russian Math. Doklady, 2010 (to appear)
[71] A. Yu. Luzgarev, “Equations defining the highest weight orbit in the adjoint representation”, St.-Petersburg Math. J., 2009 (to appear) | MR | Zbl
[72] A. Luzgarev, V. Petrov, N. Vavilov, “Explicit equations on orbit of the highest weight vector”, 2009 (to appear) | Zbl
[73] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 1–62 | MR | Zbl
[74] J. S. Milne, Algebraic groups and arithmetic groups, , 2006, 219 pp. http://www.jmilne.org/math/
[75] J. S. Milne, Semisimple Lie algebras, algebraic groups and tensor categories, , 2007, 37 pp. http://www.jmilne.org/math/
[76] I. Mirković, K. Vilonen, “Geometric Langlands duality and representations of algebraic groups over commutative rings”, Ann. Math., 165:1 (2007), 1–49 | DOI | MR
[77] D. W. Morris, “Bounded generation of $\mathrm{SL}(n,A)$ (after D. Carter, G. Keller, and E. Paige)”, New York J. Math., 13 (2007), 383–421 | MR | Zbl
[78] S. Nikolenko, N. Semenov, Chow ring structure made simple, , 2006, 17 pp. arxiv: math.AG/0606335
[79] S. Nikolenko, N. Semenov, K. Zainoulline, “Motivic decomposition of anisotropic varieties of type $\mathrm F_4$ into generalised Rost motives”, J. K-Theory, 2009 (to appear) | MR
[80] H. Park, C. Woodburn, “An algorithmic proof of Suslin's stability theorem for polynomial rings”, J. Algebra, 178:1 (1995), 277–298 | DOI | MR | Zbl
[81] V. A. Petrov, A. K. Stavrova, “Elementary subgroups of isotropic reductive groups”, St.-Petersburg Math. J., 20:4 (2008), 160–188 | MR
[82] V. Petrov, A. Stavrova, “Tits indices over semilocal rings”, J. Algebra, 2010 (to appear)
[83] V. Petrov, A. Stavrova, “Jordan–Kantor pairs and algebraic groups”, J. Algebra, 2010 (to appear)
[84] V. Petrov, A. Stavrova, “Reductive groups as automorphism groups of algebraic structures: a unified approach”, 2010 (to appear)
[85] I. M. Pevzner, Root elements in exceptional groups, Ph. D. Thesis, St.-Petesburg State Univ., 2008, 149 pp. (in Russian)
[86] I. M. Pevzner, Geometry of root elements in groups of type $\mathrm E_6$, Preprint No 12, POMI, 2008, 37 pp. (in Russian)
[87] I. M. Pevzner, The width of groups of type $\mathrm E_6$ with respect to root elements. I, Preprint No 13, POMI, 2008, 40 pp. (in Russian)
[88] E. B. Plotkin, “Surjective stability of $\mathrm K_1$-functor for some exceptional Chevalley groups”, J. Soviet Math., 198 (1991), 65–88 | MR | Zbl
[89] E. Plotkin, “Stability theorems for $\mathrm K$-functors for Chevalley groups”, Proc. Conf. Non-Associative Algebras and Related Topics, Hiroshima – 1990, World Sci., London et al., 1991, 203–217 | MR | Zbl
[90] E. Plotkin, “On the stability of $\mathrm K_1$-functor for Chevalley groups of type $\mathrm E_7$”, J. Algebra, 210 (1998), 67–85 | DOI | MR | Zbl
[91] E. Plotkin, A. Semenov, N. Vavilov, “Visual basic representations: an atlas”, Internat. J. Algebra Comput., 8:1 (1998), 61–95 | DOI | MR | Zbl
[92] E. B. Plotkin, M. R. Stein, N. A. Vavilov, “Stability of $\mathrm K$-functors modeled on Chevalley groups, revisited” (to appear)
[93] A. J. E. Ryba, “Construction of some irreducible subgroups of $\mathrm E_8$ and $\mathrm E_6$”, LMS J. Comput. Math., 10 (2007), 329–340 | DOI | MR | Zbl
[94] A. J. E. Ryba, “Identification of matrix generators of a Chevalley group”, J. Algebra, 309 (2007), 484–496 | DOI | MR | Zbl
[95] N. Semenov, “Motivic construction of cohomological invariants” (to appear)
[96] C. S. Seshadri, “Geometry of $G/P$. I. Standard monomial theory for minuscule $P$”, C. P. Ramanujam: a tribute, Tata Press, Bombay, 1978, 207–239 | MR | Zbl
[97] A. Sivatsky, A. Stepanov, “On the word length of commutators in $\mathrm{GL}_n(R)$”, $K$-theory, 17 (1999), 295–302 | DOI | MR
[98] Y. Shalom, “Bounded generation and Kazhdan property (T)”, Inst. Hautes Études Sci. Publ. Math., 90 (1999), 145–168 | DOI | MR | Zbl
[99] Ch. Soulé, “Chevalley groups over polynomial rings”, Homological group theory (Durham, 1977), London Math. Soc. Lecture Notes, 36, 1979, 359–367 | MR | Zbl
[100] S. Splitthoff, “Finite presentability of Steinberg groups and related Chevalley groups”, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part II, Contemp. Math., 55, 1986, 635–687 | DOI | MR | Zbl
[101] T. A. Springer, F. D. Veldkamp, Octonions. Jordan algebras and exceptional groups, Springer, Berlin et al., 2000 | MR | Zbl
[102] A. Stavrova, “Normal structure of maximal parabolic subgroups in Chevalley groups over commutative rings”, Algebra Coll., 16:4 (2009), 631–648 | DOI | MR | Zbl
[103] A. Stavrova, Structure of isotropic reductive groups, Ph. D. Thesis, St.-Petesburg State Univ., 2009, 158 pp. (in Russian) | Zbl
[104] M. R. Stein, “Generators, relations and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93:4 (1971), 965–1004 | DOI | MR | Zbl
[105] M. R. Stein, “The Schur multipliers of $\mathrm{Sp}_6(\mathbb Z)$, $\mathrm{Spin}_8(\mathbb Z)$, $\mathrm{Spin}_7(\mathbb Z)$ and $\mathrm F_4(\mathbb Z)$”, Math. Ann., 215 (1975), 165–172 | DOI | MR | Zbl
[106] M. R. Stein, “Stability theorems for $\mathrm K_1$, $\mathrm K_2$ and related functors modeled on Chevalley groups”, Japan J. Math., 4:1 (1978), 77–108 | MR | Zbl
[107] R. Steinberg, “Générateurs, relations et revêtements des groupes algébriques”, Colloq. Théorie des groupes algébriques (Bruxelles, 1962), 113–127 | MR | Zbl
[108] R. Steinberg, Lectures on Chevalley groups, Yale Univ., New Haven, Conn., 1968 | MR | Zbl
[109] R. Steinberg, “Generators, relations and coverings of algebraic groups. II”, J. Algebra, 71 (1981), 527–543 | DOI | MR | Zbl
[110] R. Steinberg, “Some consequences of elementary relations of $\mathrm{SL}_n$”, Contemp. Math., 45 (1985), 335–350 | DOI | MR | Zbl
[111] A. Stepanov, “Free product subgroups between Chevalley groups $G(\Phi,F)$ and $G(\Phi,F[t])$”, J. Algebra, 2010 (to appear) | MR | Zbl
[112] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, $K$-Theory, 19 (2000), 109–153 | DOI | MR | Zbl
[113] A. Stepanov, N. Vavilov, “On the length of commutators in Chevalley groups”, Israel J. Math., 2009 (to appear)
[114] A. A. Suslin, “The structure of the special linear group over polynomial rings”, Math. USSR Izv., 11:2 (1977), 235–253 | DOI | MR
[115] A. A. Suslin, V. I. Kopeiko, “Quadratic modules and orthogonal groups over polynomial rings”, J. Sov. Math., 20:6 (1982), 2665–2691 | DOI | Zbl
[116] K. Suzuki, “Normality of the elementary subgroups of twisted Chevalley groups over commutative rings”, J. Algebra, 175:3 (1995), 526–536 | DOI | MR | Zbl
[117] G. Taddei, Schémas de Chevalley, Thèse, Demazure, fonctions représentatives et théorème de normalité, Univ. de Genève, 1985, 58 pp.
[118] G. Taddei, “Normalité des groupes élémentaire dans les groupes de Chevalley sur un anneau”, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part II, Contemp. Math., 55, 1986, 693–710 | DOI | MR | Zbl
[119] O. I. Tavgen, “Finite width of arithmetic subgroups of Chevalley groups of rank $\ge2$”, Soviet Math. Doklady, 41:1 (1990), 136–140 | MR | Zbl
[120] O. I. Tavgen, “Bounded generation of Chevalley groups over rings of $S$-integer algebraic numbers”, Izv. Acad. Sci. USSR, 54:1 (1990), 97–122 | MR | Zbl
[121] O. I. Tavgen, “Bounded generation of normal and twisted Chevalley groups over the rings of $S$-integers”, Contemp. Math., 131:1 (1992), 409–421 | DOI | MR | Zbl
[122] D. M. Testerman, “A construction of certain maximal subgroups of the algebraic groups $\mathrm E_6$ and $\mathrm F_4$”, Comm. Algebra, 17:4 (1989), 1003–1016 | DOI | MR | Zbl
[123] M. S. Tulenbaev, “Schur multiplier of the group of elementary matrices of finite order”, J. Sov. Math., 17:4 (1981), 2062–2067 | DOI | Zbl
[124] L. N. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 36:5 (1986), 219–230 | DOI | MR
[125] N. Vavilov, “Structure of Chevalley groups over commutative rings”, Nonassociative algebras and related topics, Proc. Conf. Nonassociative algebras and related topics (Hiroshima, 1990), World Scientific, London et al., 1991, 219–335 | MR | Zbl
[126] N. Vavilov, “A third look at weight diagrams”, Rendiconti del Seminario Matem. della Univ. di Padova, 204 (2000), 1–45 | MR
[127] N. A. Vavilov, “Do it yourself structure constants for Lie algebras of type $\mathrm E_l$”, J. Math. Sci., 120 (2004), 1513–1548 | DOI | MR
[128] N. A. Vavilov, “Can one see the signs of the structure constants?”, St.-Petersburg Math. J., 19:4 (2007), 34–68 | MR
[129] N. A. Vavilov, “Calculations in exceptional groups”, Vestnik Samara Univ. Natural Sciences, 2007, no. 7, 11–24 (in Russian)
[130] N. Vavilov, “An $\mathrm A_3$-proof of structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$”, Int. J. Algebra Comput., 17:5–6 (2007), 1283–1298 | DOI | MR | Zbl
[131] N. A. Vavilov, “Numerology of square equations”, St.-Petersburg Math. J., 20:4 (2008), 9–40 | MR
[132] N. A. Vavilov, “An $\mathrm A_3$-proof of structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$. II. The principal lemma”, St.-Petersburg Math. J., 2010 (to appear) | Zbl
[133] N. A. Vavilov, M. R. Gavrilovich, “An $\mathrm A_2$-proof of the structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$”, St.-Petersburg Math. J., 16:4 (2005), 649–672 | DOI | MR | Zbl
[134] N. A. Vavilov, M. R. Gavrilovich, S. I. Nikolenko, “Structure of Chevalley groups: the Proof from the Book”, J. Math. Sci., 330 (2006), 36–76 | MR | Zbl
[135] N. A. Vavilov, V. G. Kazakevich, “Yet another variation of decomposition of transvections”, Vestnik SPbGU Ser. 1, 2008, no. 4, 71–74 | Zbl
[136] N. A. Vavilov, A. Yu. Luzgarev, “Normaliser of Chevalley groups of type $\mathrm E_6$”, St.-Petersburg Math. J., 19:5 (2007), 35–62 | MR
[137] N. A. Vavilov, A. Yu. Luzgarev, “Normaliser of Chevalley groups of type $\mathrm E_7$”, St.-Petersburg Math. J., 2010 (to appear) | Zbl
[138] N. A. Vavilov, A. Yu. Luzgarev, “Chevalley group of type $\mathrm E_7$ in the 56-dimensional representation”, J. Math. Sci., 2010 (to appear) | Zbl
[139] N. A. Vavilov, A. Yu. Luzgarev, “An $\mathrm A_2$-proof of the structure theorems for Chevalley groups of type $\mathrm E_8$”, St.-Petersburg Math. J., 2010 (to appear) | Zbl
[140] N. A. Vavilov, A. Yu. Luzgarev, I. M. Pevzner, “Chevalley group of type $\mathrm E_6$ in the 27-dimensional representation”, J. Math. Sci., 338 (2006), 5–68 | MR | Zbl
[141] N. A. Vavilov, S. I. Nikolenko, “An $\mathrm A_2$-proof of the structure theorems for Chevalley groups of type $\mathrm F_4$”, St.-Petersburg Math. J., 20:4 (2008), 27–63 | MR
[142] N. Vavilov, E. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Applicandae Math., 45:1 (1996), 73–113 | DOI | MR | Zbl
[143] N. A. Vavilov, E. B. Plotkin, A. V. Stepanov, “Calculations in Chevalley groups over commutative rings”, Soviet Math. Dokl., 40:1 (1990), 145–147 | MR
[144] N. A. Vavilov, A. K. Stavrova, “Basic reductions in the description oif normal subgroups”, J. Math. Sci., 151:3 (2008), 2949–2960 | DOI
[145] N. A. Vavilov, A. V. Stepanov, “Overgroups of semisimple subgroups”, Vestnik Samara Univ. Natural Sciences, 2008, no. 3(62), 51–94 (in Russian) | MR
[146] W. C. Waterhouse, Introduction to affine group schemes, Springer-Verlag, N.Y. et al., 1979 | MR | Zbl | Zbl
[147] N. J. Wildberger, “A combinatorial construction for simply-laced Lie algebras”, Adv. Appl. Math., 30 (2003), 385–396 | DOI | MR | Zbl