Categorical interpretation of logical derivations and some its applications to algebra
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 318-344 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider certain applications of proof theory to the study of algebraic categories. The case usually studied in literature is the case of free categories with additional structure. In this paper we consider several problems in non-free categories, such as the problem of full coherence, the problem of dependency of diagrams, the problem of description of arbitrary natural transformations, that show that the applications of proof theory to categories may go much farther. Bibl. – 18 titles.
@article{ZNSL_2009_373_a19,
     author = {A. El Khoury and S. Soloviev and L. Mehats and M. Spivakovsky},
     title = {Categorical interpretation of logical derivations and some its applications to algebra},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {318--344},
     year = {2009},
     volume = {373},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a19/}
}
TY  - JOUR
AU  - A. El Khoury
AU  - S. Soloviev
AU  - L. Mehats
AU  - M. Spivakovsky
TI  - Categorical interpretation of logical derivations and some its applications to algebra
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 318
EP  - 344
VL  - 373
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a19/
LA  - ru
ID  - ZNSL_2009_373_a19
ER  - 
%0 Journal Article
%A A. El Khoury
%A S. Soloviev
%A L. Mehats
%A M. Spivakovsky
%T Categorical interpretation of logical derivations and some its applications to algebra
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 318-344
%V 373
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a19/
%G ru
%F ZNSL_2009_373_a19
A. El Khoury; S. Soloviev; L. Mehats; M. Spivakovsky. Categorical interpretation of logical derivations and some its applications to algebra. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 318-344. http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a19/

[1] K. Dosen, Z. Petric, “The maximality of the typed lambda calculus and of cartesian closed catgeories”, Belgrade, Publications de l'Institut Mathématique, Nouvelle Série, 68(82) (2000), 1–19 | MR | Zbl

[2] S. Eilenberg, G. M. Kelly, “A generalization of the functorial calculus”, J. Algebra, 3 (1966), 366–375 | DOI | MR | Zbl

[3] G.-Y. Girard, Y. Lafont, “Linear logic and lazy computation”, Proc. TAPSOFT 87, V. 2, LNCS, 250, Pisa, 1987, 52–66 | MR | Zbl

[4] J. Golan, Semirings and their applications, Kluwer Acad. Publishers, Dordrecht, 1999 | MR

[5] G. M. Kelly, S. Mac Lane, “Coherence in Closed Categories”, J. Pure Appl. Algebra, 1:1 (1971), 97–140 | DOI | MR | Zbl

[6] G. M. Kelly, “A cut-elimination theorem”, Lect. Notes Math., 281, 1972, 196–213 | DOI | MR | Zbl

[7] J. Lambek, “Deductive Systems and Categories. I”, Math. Systems Theory, 2 (1968), 287–318 | DOI | MR | Zbl

[8] J. Lambek, “Deductive Systems and Categories. II”, Lect. Notes Math., 86, Springer, 1969, 76–122 | DOI | MR

[9] J. Lambek, “Deductive Systems and Categories. III”, Lect. Notes Math., 274, Springer, 1972, 57–82 | DOI | MR

[10] L. Mehats, S. Soloviev, “Coherence in SMCCs and equivalences on derivations in IMLL with unit”, Annals Pure Appl. Logic, 147:3 (2007), 127–179 | DOI | MR | Zbl

[11] G. E. Mints, “Closed categories and Proof Theory”, J. Soviet Math., 15 (1981), 45–62 | DOI | Zbl

[12] G. E. Mints, Selected Papers in Proof Theory, Bibliopolis, Naples, 1992 | MR | Zbl

[13] S. Soloviev, “On natural transformations of distinguished functors and their superpositions in certain closed categories”, J. Pure Appl. Algebra, 47 (1987), 181–204 | DOI | MR | Zbl

[14] S. Soloviev, “On the conditions of full coherence in closed categories”, J. Pure Appl. Algebra, 69 (1991), 301–329 | DOI | MR

[15] S. Soloviev, “Proof of a conjecture of S. Mac Lane”, Ann. Pure Appl. Logic, 90 (1997), 101–162 | DOI | MR | Zbl

[16] R. Cockett, M. Hyland, S. Soloviev, Natural transformations between tensor powers in the presence of direct sums, Rapport de Recherche, 01-12-R, IRIT, Jul. 2001

[17] S. Soloviev, V. Orevkov, “On categorical equivalence of Gentzen-style derivations in IMLL”, Theor. Comp. Science, 303 (2003), 245–260 | DOI | MR | Zbl

[18] R. Voreadou, Coherence and non-commutative diagrams in closed categories, Memoirs of the AMS, 9, No 182, 1977 | DOI | MR