@article{ZNSL_2009_373_a19,
author = {A. El Khoury and S. Soloviev and L. Mehats and M. Spivakovsky},
title = {Categorical interpretation of logical derivations and some its applications to algebra},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {318--344},
year = {2009},
volume = {373},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a19/}
}
TY - JOUR AU - A. El Khoury AU - S. Soloviev AU - L. Mehats AU - M. Spivakovsky TI - Categorical interpretation of logical derivations and some its applications to algebra JO - Zapiski Nauchnykh Seminarov POMI PY - 2009 SP - 318 EP - 344 VL - 373 UR - http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a19/ LA - ru ID - ZNSL_2009_373_a19 ER -
%0 Journal Article %A A. El Khoury %A S. Soloviev %A L. Mehats %A M. Spivakovsky %T Categorical interpretation of logical derivations and some its applications to algebra %J Zapiski Nauchnykh Seminarov POMI %D 2009 %P 318-344 %V 373 %U http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a19/ %G ru %F ZNSL_2009_373_a19
A. El Khoury; S. Soloviev; L. Mehats; M. Spivakovsky. Categorical interpretation of logical derivations and some its applications to algebra. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 318-344. http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a19/
[1] K. Dosen, Z. Petric, “The maximality of the typed lambda calculus and of cartesian closed catgeories”, Belgrade, Publications de l'Institut Mathématique, Nouvelle Série, 68(82) (2000), 1–19 | MR | Zbl
[2] S. Eilenberg, G. M. Kelly, “A generalization of the functorial calculus”, J. Algebra, 3 (1966), 366–375 | DOI | MR | Zbl
[3] G.-Y. Girard, Y. Lafont, “Linear logic and lazy computation”, Proc. TAPSOFT 87, V. 2, LNCS, 250, Pisa, 1987, 52–66 | MR | Zbl
[4] J. Golan, Semirings and their applications, Kluwer Acad. Publishers, Dordrecht, 1999 | MR
[5] G. M. Kelly, S. Mac Lane, “Coherence in Closed Categories”, J. Pure Appl. Algebra, 1:1 (1971), 97–140 | DOI | MR | Zbl
[6] G. M. Kelly, “A cut-elimination theorem”, Lect. Notes Math., 281, 1972, 196–213 | DOI | MR | Zbl
[7] J. Lambek, “Deductive Systems and Categories. I”, Math. Systems Theory, 2 (1968), 287–318 | DOI | MR | Zbl
[8] J. Lambek, “Deductive Systems and Categories. II”, Lect. Notes Math., 86, Springer, 1969, 76–122 | DOI | MR
[9] J. Lambek, “Deductive Systems and Categories. III”, Lect. Notes Math., 274, Springer, 1972, 57–82 | DOI | MR
[10] L. Mehats, S. Soloviev, “Coherence in SMCCs and equivalences on derivations in IMLL with unit”, Annals Pure Appl. Logic, 147:3 (2007), 127–179 | DOI | MR | Zbl
[11] G. E. Mints, “Closed categories and Proof Theory”, J. Soviet Math., 15 (1981), 45–62 | DOI | Zbl
[12] G. E. Mints, Selected Papers in Proof Theory, Bibliopolis, Naples, 1992 | MR | Zbl
[13] S. Soloviev, “On natural transformations of distinguished functors and their superpositions in certain closed categories”, J. Pure Appl. Algebra, 47 (1987), 181–204 | DOI | MR | Zbl
[14] S. Soloviev, “On the conditions of full coherence in closed categories”, J. Pure Appl. Algebra, 69 (1991), 301–329 | DOI | MR
[15] S. Soloviev, “Proof of a conjecture of S. Mac Lane”, Ann. Pure Appl. Logic, 90 (1997), 101–162 | DOI | MR | Zbl
[16] R. Cockett, M. Hyland, S. Soloviev, Natural transformations between tensor powers in the presence of direct sums, Rapport de Recherche, 01-12-R, IRIT, Jul. 2001
[17] S. Soloviev, V. Orevkov, “On categorical equivalence of Gentzen-style derivations in IMLL”, Theor. Comp. Science, 303 (2003), 245–260 | DOI | MR | Zbl
[18] R. Voreadou, Coherence and non-commutative diagrams in closed categories, Memoirs of the AMS, 9, No 182, 1977 | DOI | MR