An overview of effective normalization of a nonsingular in codimension one projective algebraic variety
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 295-317 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $V$ be a nonsingular in codimension one projective algebraic variety of degree $D$ and of dimension $n$. Then the construction of the normalization of $V$ can be reduced canonically within the time polynomial in the size of the input and $D^{n^{O(1)}}$ to solving a linear equation $aX+bY+cZ=0$ over a polynomial ring. We describe a plan with all lemmas to prove this result. Bibl. – 4 titles.
@article{ZNSL_2009_373_a18,
     author = {A. L. Chistov},
     title = {An overview of effective normalization of a~nonsingular in codimension one projective algebraic variety},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {295--317},
     year = {2009},
     volume = {373},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a18/}
}
TY  - JOUR
AU  - A. L. Chistov
TI  - An overview of effective normalization of a nonsingular in codimension one projective algebraic variety
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 295
EP  - 317
VL  - 373
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a18/
LA  - en
ID  - ZNSL_2009_373_a18
ER  - 
%0 Journal Article
%A A. L. Chistov
%T An overview of effective normalization of a nonsingular in codimension one projective algebraic variety
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 295-317
%V 373
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a18/
%G en
%F ZNSL_2009_373_a18
A. L. Chistov. An overview of effective normalization of a nonsingular in codimension one projective algebraic variety. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 295-317. http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a18/

[1] A. L. Chistov, “Polynomial complexity of the Newton–Puiseux algorithm”, Lecture Notes in Computer Science, 233, Springer, New York–Berlin–Heidelberg, 1986, 247–255 | DOI | MR

[2] A. L. Chistov, “Polynomial complexity algorithm for factoring polynomials and constructing components of a variety in subexponential time”, Zap. Nauchn. Semin. LOMI, 137, 1984, 124–188 | MR | Zbl

[3] A. L. Chistov, “Double-exponential lower bound for the degree of a system of generators of a polynomial prime ideal”, Algebra Analiz, 20:6 (2008), 186–213 | MR

[4] A. L. Chistov, A deterministic polynomial-time algorithm for the first Bertini theorem, Preprint, St. Petersburg Mathematical Society, 2004; http://www.MathSoc.spb.ru