An overview of effective normalization of a~nonsingular in codimension one projective algebraic variety
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 295-317
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $V$ be a nonsingular in codimension one projective algebraic variety of degree $D$ and of dimension $n$. Then the construction of the normalization of $V$ can be reduced canonically within the time polynomial in the size of the input and $D^{n^{O(1)}}$ to solving a linear equation $aX+bY+cZ=0$ over a polynomial ring. We describe a plan with all lemmas to prove this result. Bibl. – 4 titles.
@article{ZNSL_2009_373_a18,
author = {A. L. Chistov},
title = {An overview of effective normalization of a~nonsingular in codimension one projective algebraic variety},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {295--317},
publisher = {mathdoc},
volume = {373},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a18/}
}
TY - JOUR AU - A. L. Chistov TI - An overview of effective normalization of a~nonsingular in codimension one projective algebraic variety JO - Zapiski Nauchnykh Seminarov POMI PY - 2009 SP - 295 EP - 317 VL - 373 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a18/ LA - en ID - ZNSL_2009_373_a18 ER -
A. L. Chistov. An overview of effective normalization of a~nonsingular in codimension one projective algebraic variety. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 295-317. http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a18/