Functional approach for Hamiltonian Circuit and graph isomorphism problems
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 290-294 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The aim of this work is to establish relation between well-known basic problems of cryptanalysis as Hamiltonian Circuit and graph isomorphism problems and global optimization problem for classes of functionals constructed as sums of low dimensional polynomials. Bibl. – 2 titles.
@article{ZNSL_2009_373_a17,
     author = {R. T. Faizullin},
     title = {Functional approach for {Hamiltonian} {Circuit} and graph isomorphism problems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {290--294},
     year = {2009},
     volume = {373},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a17/}
}
TY  - JOUR
AU  - R. T. Faizullin
TI  - Functional approach for Hamiltonian Circuit and graph isomorphism problems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 290
EP  - 294
VL  - 373
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a17/
LA  - en
ID  - ZNSL_2009_373_a17
ER  - 
%0 Journal Article
%A R. T. Faizullin
%T Functional approach for Hamiltonian Circuit and graph isomorphism problems
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 290-294
%V 373
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a17/
%G en
%F ZNSL_2009_373_a17
R. T. Faizullin. Functional approach for Hamiltonian Circuit and graph isomorphism problems. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 290-294. http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a17/

[1] M. Blum, “How to prove a Theorem So No One Else Can Claim It”, Proceedings of the International Congress of Mathematicians, Berkeley, CA, 1986, 1444–1451 | MR

[2] O. Coldreich, “Proof that yield nothing but their validity or all languages in NP have zero-knowledge proof systems”, J. ACM, 38:3 (1991), 691–729 | MR