On problem of $L$-functions numerical computation
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 273-279 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The aim of the paper is to introduce a general method for numerical computing $L$-functions which is based on approximate functional equations. Bibl. – 6 titles.
@article{ZNSL_2009_373_a15,
     author = {N. V. Proskurin},
     title = {On problem of $L$-functions numerical computation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {273--279},
     year = {2009},
     volume = {373},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a15/}
}
TY  - JOUR
AU  - N. V. Proskurin
TI  - On problem of $L$-functions numerical computation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 273
EP  - 279
VL  - 373
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a15/
LA  - ru
ID  - ZNSL_2009_373_a15
ER  - 
%0 Journal Article
%A N. V. Proskurin
%T On problem of $L$-functions numerical computation
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 273-279
%V 373
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a15/
%G ru
%F ZNSL_2009_373_a15
N. V. Proskurin. On problem of $L$-functions numerical computation. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 273-279. http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a15/

[1] A. F. Lavrik, “O funktsionalnykh uravneniyakh funktsii Dirikhle”, Izv. Akad. Nauk SSSR. Ser. matem., 31:2 (1967), 431–442 | MR | Zbl

[2] A. F. Lavrik, “Priblizhennye funktsionalnye uravneniya funktsii Dirikhle”, Izv. Akad. Nauk SSSR. Ser. matem., 32:1 (1968), 134–185 | MR | Zbl

[3] N. V. Proskurin, “Vychislenie nulei $L$-funktsii, assotsiirovannoi s kubicheskoi teta-funktsiei”, Zap. nauchn. semin. POMI, 357, 2008, 180–194 | MR

[4] N. V. Proskurin, “Computation of Rankin-Selberg convolutions of Maass wave forms $L$-functions”, International Conference Polynomial Computer Algebra (St.-Petersburg, April, 2009), 95–99

[5] A. Strömbergsson, “On the zeros of L-functions associated to Maass waveforms”, Inter. Math. Res. Notes, 15 (1999), 839–851 | DOI | MR | Zbl

[6] A. Strömbergsson, Studies in the analytic and spectral theory of automorphic forms, Uppsala dissertations in math., 17, Uppsala Univ., 2001 | MR | Zbl