@article{ZNSL_2009_373_a15,
author = {N. V. Proskurin},
title = {On problem of $L$-functions numerical computation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {273--279},
year = {2009},
volume = {373},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a15/}
}
N. V. Proskurin. On problem of $L$-functions numerical computation. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 273-279. http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a15/
[1] A. F. Lavrik, “O funktsionalnykh uravneniyakh funktsii Dirikhle”, Izv. Akad. Nauk SSSR. Ser. matem., 31:2 (1967), 431–442 | MR | Zbl
[2] A. F. Lavrik, “Priblizhennye funktsionalnye uravneniya funktsii Dirikhle”, Izv. Akad. Nauk SSSR. Ser. matem., 32:1 (1968), 134–185 | MR | Zbl
[3] N. V. Proskurin, “Vychislenie nulei $L$-funktsii, assotsiirovannoi s kubicheskoi teta-funktsiei”, Zap. nauchn. semin. POMI, 357, 2008, 180–194 | MR
[4] N. V. Proskurin, “Computation of Rankin-Selberg convolutions of Maass wave forms $L$-functions”, International Conference Polynomial Computer Algebra (St.-Petersburg, April, 2009), 95–99
[5] A. Strömbergsson, “On the zeros of L-functions associated to Maass waveforms”, Inter. Math. Res. Notes, 15 (1999), 839–851 | DOI | MR | Zbl
[6] A. Strömbergsson, Studies in the analytic and spectral theory of automorphic forms, Uppsala dissertations in math., 17, Uppsala Univ., 2001 | MR | Zbl