Random walks on strict partitions
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 226-272 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We construct a diffusion process in the infinite-dimensional simplex consisting of all nonincreasing infinite sequences of nonnegative numbers with sum less than or equal to one. The process is constructed as a limit of a certain sequence of Markov chains. The state space of the $n$th chain is the set of all strict partitions of $n$ (that is, partitions without equal parts). As $n\to\infty$, these random walks converge to a continuous-time strong Markov process in the infinite-dimensional simplex. The process has continuous sample paths. The main result about the limit process is the expression of its pre-generator as a formal second order differential operator in a polynomial algebra. Bibl. – 30 titles.
@article{ZNSL_2009_373_a14,
     author = {L. Petrov},
     title = {Random walks on strict partitions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {226--272},
     year = {2009},
     volume = {373},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a14/}
}
TY  - JOUR
AU  - L. Petrov
TI  - Random walks on strict partitions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 226
EP  - 272
VL  - 373
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a14/
LA  - ru
ID  - ZNSL_2009_373_a14
ER  - 
%0 Journal Article
%A L. Petrov
%T Random walks on strict partitions
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 226-272
%V 373
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a14/
%G ru
%F ZNSL_2009_373_a14
L. Petrov. Random walks on strict partitions. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 226-272. http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a14/

[1] A. Berele, B. Tenner, Doubly Symmetric Functions, , 2009 arXiv: 0903.5306v1[math.CO]

[2] Zap. Nauchn. Sem. POMI, 240, 1997, 44–52, 290–291 | DOI | MR | Zbl

[3] A. Borodin, G. Olshanski, “Infinite-dimensional diffusions as limits of random walks on partitions”, Prob. Theor. Rel. Fields, 144:1 (2009), 281–318 ; arXiv: 0706.1034v2[math.PR] | DOI | MR | Zbl

[4] S. N. Ethier, T. G. Kurtz, Markov processes: Characterization and convergence, Wiley-Interscience, New York, 1986 | MR | Zbl

[5] W. J. Ewens, Mathematical Population Genetics, Springer-Verlag, Berlin, 1979 | MR | Zbl

[6] J. Fulman, “Stein's method and Plancherel measure of the symmetric group”, Trans. Amer. Math. Soc., 357 (2005), 555–570 ; arXiv: math/0305423v3[math.RT] | DOI | MR | Zbl

[7] J. Fulman, “Commutation relations and Markov chains”, Prob. Theory Rel. Fields, 144:1 (2009), 99–136 ; arXiv: 0712.1375v2[math.PR] | DOI | MR | Zbl

[8] A. Gnedin, G. Olshanski, “Coherent permutations with descent statistic and the boundary problem for the graph of zigzag diagrams”, Intern. Math. Research Notices, 2006, Art. ID 51968, 39 pp. ; arXiv: math/0508131v2[math.CO] | MR

[9] P. N. Hoffman, J. F. Humphreys, Projective representations of the symmetric groups, Oxford Univ. Press, 1992 | MR | Zbl

[10] Zap. Nauchn. Sem. POMI, 240, 1997, 115–135 | DOI | MR | Zbl

[11] S. Kerov, “Anisotropic Young diagrams and Jack symmetric functions”, Functional Analysis and Its Applications, 34:1 (2000), 41–51 ; arXiv: math/9712267v1[math.CO] | DOI | MR | Zbl

[12] S. Kerov, A. Okounkov, G. Olshanski, “The boundary of Young graph with Jack edge multiplicities”, Intern. Math. Research Notices, 4 (1998), 173–199 ; arXiv: q-alg/9703037v1 | DOI | MR | Zbl

[13] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group. A deformation of the regular representation”, Comptes Rendus Acad. Sci. Paris Ser. I, 316 (1993), 773–778 | MR | Zbl

[14] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group”, Invent. Math., 158:3 (2004), 551–642 ; arXiv: math.RT/0312270 | DOI | MR | Zbl

[15] S. Kerov, A. Vershik, “The Grothendieck Group of the Infinite Symmetric Group and Symmetric Functions with the Elements of the $K_0$-functor theory of AF-algebras”, Adv. Stud. Contemp. Math., 7, Gordon and Breach, 1990, 36–114 | MR

[16] J. F. C. Kingman, “Random partitions in population genetics”, Proc. R. Soc. London A, 361 (1978), 1–20 | DOI | MR | Zbl

[17] I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford University Press, 1995 | MR | Zbl

[18] M. Nazarov, “Projective representations of the infinite symmetric group”, Representation theory and dynamical systems, Advances in Soviet Mathematics, 9, ed. A. M. Vershik, Amer. Math. Soc., 1992, 115–130 | MR

[19] G. Olshanski, Anisotropic Young diagrams and infinite-dimensional diffusion processes with the Jack parameter, , 2009 arXiv: 0902.3395v1[math.PR] | MR

[20] L. Petrov, Random walks on strict partitions, , 2009 arXiv: 0904.1823v1[math.PR] | MR

[21] J. Pitman, The two-parameter generalization of Ewens' random partition structure, Technical report No 345, Dept. Statistics, U. C. Berkeley, 1992; http://www.stat.berkeley.edu/tech-reports/

[22] J. Pitman, Combinatorial Stochastic Processes: Ecole d'ete de Probabilites de Saint-Flour XXXII – 2002, Lect. Notes in Math., 1875, Springer-Verlag, Berlin, 2006 ; http://works.bepress.com/jim_pitman/1 | MR | Zbl

[23] I. Schur, “Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrocheme lineare Substitionen”, J. Reine Angew. Math., 139 (1911), 155–250 | DOI | Zbl

[24] J. Stembridge, “A characterization of supersymmetric polynomials”, J. Algebra, 95 (1985), 439–444 | DOI | MR | Zbl

[25] J. Stembridge, “Shifted tableaux and the projective representations of symmetric groups”, Advances in Math., 74 (1989), 87–134 | DOI | MR | Zbl

[26] J. Stembridge, “On Schur's Q-functionsand the primitive idempotents of a commutative Hecke algebra”, J. Algebraic Combin., 1 (1992), 71–95 | DOI | MR | Zbl

[27] E. Thoma, “Die unzerlegbaren, positive-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe”, Math. Zeitschr., 85 (1964), 40–61 | DOI | MR | Zbl

[28] H. F. Trotter, “Approximation of Semigroups of Operators”, Pacific J. Math., 8 (1958), 887–919 | DOI | MR | Zbl

[29] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1984 | MR

[30] L. Petrov, “Dvukhparametricheskoe semeistvo beskonechnomernykh diffuzii na simplekse Kingmana”, Funktsionalnyi analiz i ego prilozheniya, 43:4 (2009), 45–66 ; arXiv: 0708.1930v3[math.PR] | DOI | MR | Zbl