On parallelepipeds and centrally symmetric hexagonal prisms circumscribed about a~three-dimensional centrally symmetric convex body
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 103-107

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be a three-dimensional centrally symmetric compact convex set of unit volume. It is proved that $K$ is contained in a centrally symmetric hexagonal prism or a parallelepiped with volume $4/\root3\of32.7735$. This fact implies that $K$ admits a lattice packing in space with density at least $\root3\of3/4>0.3605$. Furthermore, $K$ is contained in a parallelepiped with volume $4(3+6/(\sqrt3(1+\operatorname{ctg}(\pi/12))))^{2/3}/33.2082$. Bibl. – 6 titles.
@article{ZNSL_2009_372_a9,
     author = {V. V. Makeev},
     title = {On parallelepipeds and centrally symmetric hexagonal prisms circumscribed about a~three-dimensional centrally symmetric convex body},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {103--107},
     publisher = {mathdoc},
     volume = {372},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a9/}
}
TY  - JOUR
AU  - V. V. Makeev
TI  - On parallelepipeds and centrally symmetric hexagonal prisms circumscribed about a~three-dimensional centrally symmetric convex body
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 103
EP  - 107
VL  - 372
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a9/
LA  - ru
ID  - ZNSL_2009_372_a9
ER  - 
%0 Journal Article
%A V. V. Makeev
%T On parallelepipeds and centrally symmetric hexagonal prisms circumscribed about a~three-dimensional centrally symmetric convex body
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 103-107
%V 372
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a9/
%G ru
%F ZNSL_2009_372_a9
V. V. Makeev. On parallelepipeds and centrally symmetric hexagonal prisms circumscribed about a~three-dimensional centrally symmetric convex body. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 103-107. http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a9/