On polygons inscribed in a~closed space curve
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 97-102

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $n$ be an odd positive integer. It is proved that if $n+2$ is a power of a prime number and $\gamma$ is a regular closed non-self-intersecting curve in $\mathbb R^n$, then $\gamma$ contains vertices of an equilateral $(n+2)$-link polyline with $n+1$ vertices lying in a hyperplane. It is also proved that if $\gamma$ is a rectifiable closed curve in $\mathbb R^n$, then $\gamma$ contains $n+1$ points that lie in a hyperplane and divide $\gamma$ into parts one of which is twice as long as each of the others. Bibl. – 5 titles.
@article{ZNSL_2009_372_a8,
     author = {V. V. Makeev},
     title = {On polygons inscribed in a~closed space curve},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {97--102},
     publisher = {mathdoc},
     volume = {372},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a8/}
}
TY  - JOUR
AU  - V. V. Makeev
TI  - On polygons inscribed in a~closed space curve
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 97
EP  - 102
VL  - 372
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a8/
LA  - ru
ID  - ZNSL_2009_372_a8
ER  - 
%0 Journal Article
%A V. V. Makeev
%T On polygons inscribed in a~closed space curve
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 97-102
%V 372
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a8/
%G ru
%F ZNSL_2009_372_a8
V. V. Makeev. On polygons inscribed in a~closed space curve. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 97-102. http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a8/