An extremal property of convex hexagons
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 93-96

Voir la notice de l'article provenant de la source Math-Net.Ru

The following conjecture is discussed: if $K$ is a plane convex figure and $T$ is a triangle of maximal area contained in $K$, then $K$ is contained in $\sqrt5T$. It is shown that it suffices to check the conjecture in the case where $K$ is a convex hexagon, but the conjecture is proved only in the case where $K$ is a pentagon. Bibl. – 2 titles.
@article{ZNSL_2009_372_a7,
     author = {V. V. Makeev},
     title = {An extremal property of convex hexagons},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {93--96},
     publisher = {mathdoc},
     volume = {372},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a7/}
}
TY  - JOUR
AU  - V. V. Makeev
TI  - An extremal property of convex hexagons
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 93
EP  - 96
VL  - 372
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a7/
LA  - ru
ID  - ZNSL_2009_372_a7
ER  - 
%0 Journal Article
%A V. V. Makeev
%T An extremal property of convex hexagons
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 93-96
%V 372
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a7/
%G ru
%F ZNSL_2009_372_a7
V. V. Makeev. An extremal property of convex hexagons. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 93-96. http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a7/