On a~certain feature of logarithmic spirals
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 82-92

Voir la notice de l'article provenant de la source Math-Net.Ru

A curve formed by inversion of a logarithmic spiral is called a double logarithmic spiral. The curves in this family possess the following property: there always exists such a spiral with continuous and monotone curvature satisfying any possible boundary conditions (= end points, tangents, and curvatures). Thus, the problem of constructing a spiral with continuous curvature and prescribed curvature elements at the endpoints is solved. Bibl. – 6 titles.
@article{ZNSL_2009_372_a6,
     author = {A. I. Kurnosenko},
     title = {On a~certain feature of logarithmic spirals},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {82--92},
     publisher = {mathdoc},
     volume = {372},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a6/}
}
TY  - JOUR
AU  - A. I. Kurnosenko
TI  - On a~certain feature of logarithmic spirals
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 82
EP  - 92
VL  - 372
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a6/
LA  - ru
ID  - ZNSL_2009_372_a6
ER  - 
%0 Journal Article
%A A. I. Kurnosenko
%T On a~certain feature of logarithmic spirals
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 82-92
%V 372
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a6/
%G ru
%F ZNSL_2009_372_a6
A. I. Kurnosenko. On a~certain feature of logarithmic spirals. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 82-92. http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a6/