On a certain feature of logarithmic spirals
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 82-92
Voir la notice du chapitre de livre
A curve formed by inversion of a logarithmic spiral is called a double logarithmic spiral. The curves in this family possess the following property: there always exists such a spiral with continuous and monotone curvature satisfying any possible boundary conditions (= end points, tangents, and curvatures). Thus, the problem of constructing a spiral with continuous curvature and prescribed curvature elements at the endpoints is solved. Bibl. – 6 titles.
@article{ZNSL_2009_372_a6,
author = {A. I. Kurnosenko},
title = {On a~certain feature of logarithmic spirals},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {82--92},
year = {2009},
volume = {372},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a6/}
}
A. I. Kurnosenko. On a certain feature of logarithmic spirals. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 82-92. http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a6/
[1] A. I. Kurnosenko, “Postroenie spiralei s zadannymi granichnymi usloviyami”, Zap. nauchn. semin. POMI, 372, 2009, 62–81 | MR
[2] A. I. Kurnosenko, “Obschie svoistva ploskikh spiralnykh krivykh”, Zap. nauchn. semin. POMI, 353, 2008, 93–115 | MR
[3] A. I. Kurnosenko, “Dlinnye spirali”, Zap. nauchn. semin. POMI, 372, 2009, 44–52 | MR
[4] A. I. Kurnosenko, “Inversnyi invariant pary okruzhnostei”, Zap. nauchn. semin. POMI, 261, 1999, 167–186 | MR | Zbl
[5] A. I. Markushevich, L. A. Markushevich, Vvedenie v teoriyu analiticheskikh funktsii, Prosveschenie, M., 1977 | Zbl
[6] A. I. Markushevich, Teoriya analiticheskikh funktsii, Nauka, M., 1968 | Zbl