Short spirals
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 34-43

Voir la notice de l'article provenant de la source Math-Net.Ru

Some previous results for planar curves with monotone curvature (spirals), limited in length by one way or another, are extended by removing requirements of convexity of the arc, its one-to-one projectability onto the chord, and curvature continuity. A more general class of short spiral arcs is thus introduced. Statements include Vogt's theorem, concerning boundary angles of a convex spiral arc, the necessary and sufficient conditions for its existence, positional inequalities for such arcs. Bibl. – 8 titles.
@article{ZNSL_2009_372_a2,
     author = {A. I. Kurnosenko},
     title = {Short spirals},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {34--43},
     publisher = {mathdoc},
     volume = {372},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a2/}
}
TY  - JOUR
AU  - A. I. Kurnosenko
TI  - Short spirals
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 34
EP  - 43
VL  - 372
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a2/
LA  - ru
ID  - ZNSL_2009_372_a2
ER  - 
%0 Journal Article
%A A. I. Kurnosenko
%T Short spirals
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 34-43
%V 372
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a2/
%G ru
%F ZNSL_2009_372_a2
A. I. Kurnosenko. Short spirals. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 34-43. http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a2/