On homotopy invariants of maps to the circle
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 187-202 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Homotopy classes of maps of a space $X$ to the circle $T$ form an Abelian group $B(X)$ (Bruschlinsky group). A map $f\colon B(X)\to C$, where $C$ is an Abelian group, has order at most $r$ if for a continuous map $a\colon X\to T$ the value $f([a])$ can be $\mathbb Z$-linearly expressed in terms of the indicator function $I_r(a)\colon(X\times T)^r\to\mathbb Z$ of the $r$th Cartesian power of the graph of $a$. We prove that the order of $f$ equals the algebraic degree of $f$. (A map between abelian groups has degree at most $r$ if its finite differences of order $r+1$ vanish.) Bibl. – 2 titles.
@article{ZNSL_2009_372_a17,
     author = {S. S. Podkorytov},
     title = {On homotopy invariants of maps to the circle},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {187--202},
     year = {2009},
     volume = {372},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a17/}
}
TY  - JOUR
AU  - S. S. Podkorytov
TI  - On homotopy invariants of maps to the circle
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 187
EP  - 202
VL  - 372
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a17/
LA  - ru
ID  - ZNSL_2009_372_a17
ER  - 
%0 Journal Article
%A S. S. Podkorytov
%T On homotopy invariants of maps to the circle
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 187-202
%V 372
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a17/
%G ru
%F ZNSL_2009_372_a17
S. S. Podkorytov. On homotopy invariants of maps to the circle. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 187-202. http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a17/

[1] S. S. Podkorytov, “Poryadok funktsii na gruppe Brushlinskogo”, Zap. nauchn. semin. POMI, 261, 1999, 222–228 | MR | Zbl

[2] S. S. Podkorytov, “Poryadok funktsii na gruppe Brushlinskogo dvumernogo poliedra”, Zap. nauchn. semin. POMI, 353, 2008, 181–190 | MR