General hyperbolicity conditions for set-valued mappings
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 172-186 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We give a definition of hyperbolicity for dynamical systems generated by set-valued mappings of general form in terms of local selectors. It is shown that a system hyperbolic in this sense has the shadowing and inverse shadowing properties. It is also shown that the hyperbolicity property holds true for a certain class of set-valued mappings in which images of points are convex polytopes. Bibl. – 13 titles.
@article{ZNSL_2009_372_a16,
     author = {S. Yu. Pilyugin and J. Rieger},
     title = {General hyperbolicity conditions for set-valued mappings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {172--186},
     year = {2009},
     volume = {372},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a16/}
}
TY  - JOUR
AU  - S. Yu. Pilyugin
AU  - J. Rieger
TI  - General hyperbolicity conditions for set-valued mappings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 172
EP  - 186
VL  - 372
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a16/
LA  - ru
ID  - ZNSL_2009_372_a16
ER  - 
%0 Journal Article
%A S. Yu. Pilyugin
%A J. Rieger
%T General hyperbolicity conditions for set-valued mappings
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 172-186
%V 372
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a16/
%G ru
%F ZNSL_2009_372_a16
S. Yu. Pilyugin; J. Rieger. General hyperbolicity conditions for set-valued mappings. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 172-186. http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a16/

[1] S. Yu. Pilyugin, Shadowing in Dynamical Systems, Lect. Notes Math., 1706, 1999 | MR | Zbl

[2] K. Palmer, Shadowing in Dynamical Systems. Theory and Applications, Kluwer, Dordrecht, 2000 | MR | Zbl

[3] W.-J. Beyn, “On the numerical approximation of phase portraits near stationary points”, SIAM J. Numer. Anal., 24 (1987), 1095–1113 | DOI | MR | Zbl

[4] R. M. Corless, S. Yu. Pilyugin, “Approximate and real trajectories for generic dynamical systems”, J. Math. Anal. Appl., 189 (1995), 409–423 | DOI | MR | Zbl

[5] A. Al-Nayef et al., “Bi-shadowing and delay equations”, Dynam. Stability Systems, 11 (1996), 121–134 | DOI | MR | Zbl

[6] V. Glavan, V. Gutu, “On the dynamics of contractive relations”, Analysis and Optimization of Differential Systems, Kluwer, Dordrecht, 2003, 179–188 | DOI | MR | Zbl

[7] V. Glavan, V. Gutu, “Attractors and fixed points of weakly contracting relations”, Fixed Point Theory, 5:2 (2004), 265–284 | MR | Zbl

[8] S. Yu. Pilyugin, J. Rieger, “Shadowing and inverse shadowing in set-valued dynamical systems. Contractive case”, Topol. Methods Nonlinear Anal., 32 (2008), 139–149 | MR | Zbl

[9] E. Akin, Simplicial Dynamical Systems, Mem. Amer. Math. Soc., 667, 1999 | MR | Zbl

[10] R. McGehee, E. Sander, “A new proof of the stable manifold theorem”, Z. angew. Math. Phys., 47 (1996), 497–513 | DOI | MR | Zbl

[11] E. Sander, “Hyperbolic sets for noninvertible maps and relations”, Discrete Contin. Dynam. Systems, 8:2 (1999), 339–357 | DOI | MR

[12] S. Yu. Pilyugin, J. Rieger, “Shadowing and inverse shadowing in set-valued dynamical systems. Hyperbolic case”, Top. Meth. Nonlin. Anal., 32 (2008), 151–164 | MR | Zbl

[13] J. P. Aubin, A. Cellina, Differential Inclusions, Springer, Berlin, 1984 | MR | Zbl