Pointed spherical tilings and hyperbolic virtual polytopes
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 157-171

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents an introduction to the theory of hyperbolic virtual polytopes from the combinatorial rigidity viewpoint. Namely, we give a shortcut for a reader acquainted with the notions of Laman graph, 3D lifting, and pointed tiling. From this viewpoint, a hyperbolic virtual polytope is a stressed pointed graph embedded in the sphere $S^2$. The advantage of such a presentation is that it gives an alternative and most convincing proof of existence of hyperbolic virtual polytopes. Bibl. – 20 titles.
@article{ZNSL_2009_372_a15,
     author = {G. Yu. Panina},
     title = {Pointed spherical tilings and hyperbolic virtual polytopes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {157--171},
     publisher = {mathdoc},
     volume = {372},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a15/}
}
TY  - JOUR
AU  - G. Yu. Panina
TI  - Pointed spherical tilings and hyperbolic virtual polytopes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 157
EP  - 171
VL  - 372
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a15/
LA  - en
ID  - ZNSL_2009_372_a15
ER  - 
%0 Journal Article
%A G. Yu. Panina
%T Pointed spherical tilings and hyperbolic virtual polytopes
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 157-171
%V 372
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a15/
%G en
%F ZNSL_2009_372_a15
G. Yu. Panina. Pointed spherical tilings and hyperbolic virtual polytopes. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 157-171. http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a15/