Pointed spherical tilings and hyperbolic virtual polytopes
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 157-171 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper presents an introduction to the theory of hyperbolic virtual polytopes from the combinatorial rigidity viewpoint. Namely, we give a shortcut for a reader acquainted with the notions of Laman graph, 3D lifting, and pointed tiling. From this viewpoint, a hyperbolic virtual polytope is a stressed pointed graph embedded in the sphere $S^2$. The advantage of such a presentation is that it gives an alternative and most convincing proof of existence of hyperbolic virtual polytopes. Bibl. – 20 titles.
@article{ZNSL_2009_372_a15,
     author = {G. Yu. Panina},
     title = {Pointed spherical tilings and hyperbolic virtual polytopes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {157--171},
     year = {2009},
     volume = {372},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a15/}
}
TY  - JOUR
AU  - G. Yu. Panina
TI  - Pointed spherical tilings and hyperbolic virtual polytopes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 157
EP  - 171
VL  - 372
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a15/
LA  - en
ID  - ZNSL_2009_372_a15
ER  - 
%0 Journal Article
%A G. Yu. Panina
%T Pointed spherical tilings and hyperbolic virtual polytopes
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 157-171
%V 372
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a15/
%G en
%F ZNSL_2009_372_a15
G. Yu. Panina. Pointed spherical tilings and hyperbolic virtual polytopes. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 157-171. http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a15/

[1] A. D. Aleksandrov, “On uniqueness theorems for closed surfaces”, Dokl. Akad. Nauk SSSR, 22:3 (1939), 99–102

[2] H. Crapo, W. Whiteley, “Plane self-stresses and projected polyhedra I: The basic pattern”, Structural Topology, 20 (1993), 55–78 | MR

[3] J. Graver, B. Servatius, H. Servatius, Combinatorial Rigidity, Grad. Stud. Math., 2, Amer. Math. Soc., 1993 | MR | Zbl

[4] M. Knyazeva, G. Panina, “An illustrated theory of hyperbolic virtual polytopes”, Cent. Eur. J. Math., 6:2 (2008), 204–217 | DOI | MR | Zbl

[5] M. Knyazeva, G. Panina, “On nonisotopic saddle hedgehogs”, Uspekhi Mat. Nauk, 63:5(383) (2008), 189–190 | DOI | MR | Zbl

[6] A. V. Pukhlikov, A. G. Khovanskii, “Finitely additive measures of virtual polytopes”, Algebra i Analiz, 4:2 (1992), 161–185 | MR | Zbl

[7] R. Haas, D. Orden, G. Rote, F. Santos, B. Servatius, H. Servatius, D. Souvaine, I. Streinu, W. Whiteley, “Planar minimally rigid graphs and pseudo-triangulations”, Comp. Geom., 31:1–2 (2005), 31–61 | DOI | MR | Zbl

[8] G. Laman, “On graphs and rigidity of plane skeletal structures”, J. Engrg. Math., 4 (1970), 331–340 | DOI | MR | Zbl

[9] Y. Martinez-Maure, “Contre-exemple à une caractérisation conjecturée de la sphère”, C. R. Acad. Sci. Paris Ser. I Math., 332:1 (2001), 41–44 | DOI | MR | Zbl

[10] Y. Martinez-Maure, “Théorie des hérissons et polytopes”, C. R. Acad. Sci. Paris Ser. I Math., 336:3 (2003), 241–244 | DOI | MR | Zbl

[11] G. Panina, “New counterexamples to A. D. Alexandrov's uniqueness hypothesis”, Adv. Geom., 5:2 (2005), 301–317 | DOI | MR | Zbl

[12] G. Panina, “On hyperbolic virtual polytopes and hyperbolic fans”, Cent. Eur. J. Math., 4 (2006), 270–293 | DOI | MR | Zbl

[13] G. Panina, “On nonisotopic saddle surfaces”, Eur. J. Comb. (to appear)

[14] G. Panina, Around A. D. Alexandrov's uniqueness theorem for 3D polytopes, Preprint, Bielefeld University

[15] A. V. Pogorelov, “Solution of a problem by A. D. Aleksandrov”, Dokl. Akad. Nauk, 360:3 (1998), 317–319 | MR | Zbl

[16] G. Rote, F. Santos, I. Streinu, “Pseudo-triangulations – a survey”, Contemp. Math., 453 (2008), 343–410 | DOI | MR | Zbl

[17] I. Streinu, “Pseudo-triangulations, rigidity, and motion planning”, Discrete Comput. Geom., 34:4 (2005), 587–635 | DOI | MR | Zbl

[18] I. Streinu, W. Whiteley, “Single-vertex origami and spherical expansive motions”, Lect. Notes Comput. Sci., 3742, 2005, 161–173 | DOI | MR | Zbl

[19] G. M. Ziegler, Lectures on Polytopes, Grad. Texts in Math., Springer, Berlin, 1995 | DOI | MR | Zbl | Zbl

[20] A site on hyperbolic virtual polytopes, http://club.pdmi.ras.ru/~panina/hyperbolicpolytopes.html