Transformation formulas for pseudo-characters of braid groups
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 128-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We develop the theory of pseudo-characters of braid groups. We study a special family of operators between spaces of pseudo-characters of braid groups and describe techniques of obtaining new pseudo-characters of braid groups from known ones. A number of general results on the structure of the spaces of pseudo-characters is obtained. Bibl. – 12 titles.
@article{ZNSL_2009_372_a13,
     author = {A. V. Malutin},
     title = {Transformation formulas for pseudo-characters of braid groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {128--148},
     year = {2009},
     volume = {372},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a13/}
}
TY  - JOUR
AU  - A. V. Malutin
TI  - Transformation formulas for pseudo-characters of braid groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 128
EP  - 148
VL  - 372
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a13/
LA  - ru
ID  - ZNSL_2009_372_a13
ER  - 
%0 Journal Article
%A A. V. Malutin
%T Transformation formulas for pseudo-characters of braid groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 128-148
%V 372
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a13/
%G ru
%F ZNSL_2009_372_a13
A. V. Malutin. Transformation formulas for pseudo-characters of braid groups. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 128-148. http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a13/

[1] R. Bell, D. Margalit, “Injections of Artin groups”, Comment. Math. Helv., 82 (2007), 725–751 | DOI | MR | Zbl

[2] M. Bestvina, K. Fujiwara, “Bounded cohomology of subgroups of mapping class groups”, Geom. Topol., 6 (2002), 69–89 | DOI | MR | Zbl

[3] K. S. Braun, Kogomologii grupp, Nauka, M., 1987 | MR

[4] J. Dyer, E. Grossman, “The automorphism groups of the braid groups”, Amer. J. Math., 103 (1981), 1151–1169 | DOI | MR | Zbl

[5] J.-M. Gambaudo, É. Ghys, “Commutators and diffeomorphisms of surfaces”, Ergodic Theory Dynam. Systems, 24 (2004), 1591–1617 | DOI | MR | Zbl

[6] J.-M. Gambaudo, É. Ghys, “Braids and signatures”, Bull. Soc. Math. France, 133 (2005), 541–579 | MR

[7] K. Honda, W. Kazez, G. Matić, “Right-veering diffeomorphisms of compact surfaces with boundary. I”, Invent. Math., 169 (2007), 427–449 | DOI | MR | Zbl

[8] K. Honda, W. Kazez, G. Matić, “Right-veering diffeomorphisms of compact surfaces with boundary. II”, Geom. Topol., 12 (2008), 2057–2094 | DOI | MR | Zbl

[9] V. Lin, Braids and permutations, E-print arxiv: math/0404528[math.GR]

[10] A. V. Malyutin, “Zakruchennost (zamknutykh) kos”, Algebra i analiz, 16:5 (2004), 59–91 | MR

[11] A. V. Malyutin, “Priznaki prostoty zatseplenii v terminakh psevdokharakterov”, Zap. nauchn. semin. POMI, 353, 2008, 150–161 | MR

[12] A. A. Markov, “Osnovy algebraicheskoi teorii kos”, Tr. Matem. in-ta im. V. A. Steklova, 16, 1945, 3–53 | MR | Zbl