On measure of central symmetry for fields of convex figures and three-dimensional convex bodies
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 108-118
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\gamma^3_2\colon E_2(\mathbb R^3)\to G_2(\mathbb R^3)$ be a tautological vector bundle over the Grassmann of 2-planes in $\mathbb R^3$, where the fiber over a plane is the plane itself regarded as a two-dimensional subspace of $\mathbb R^3$. We say that a field of convex figures is given in $\gamma^3_2$ if in each fiber a convex figure is distinguished, which continuously depends on the fiber. 
Theorem 1. Each field of convex figures in $\gamma^3_2$ contains a figure $K$ containing a centrally symmetric convex figure with area at least $(4+16\sqrt2)S(K)/31>0.858\,S(K)$. (Here, $S(K)$ denotes the area of $K$.) Theorem 2. Each field of convex figures in $\gamma^3_2$ contains a figure $K$ that is contained in a centrally symmetric convex figure with area at most $(12\sqrt2-8)S(K)/71.282\,S(K)$. Theorem 3. Each three-dimensional convex body $K$ is contained in a cylinder with centrally symmetric convex base and with volume at most $(36\sqrt2-24)V(K)/73.845\,V(K)$. (Here, $V(K)$ denotes the volume of $K$.) Bibl. – 5 titles.
			
            
            
            
          
        
      @article{ZNSL_2009_372_a10,
     author = {V. V. Makeev},
     title = {On measure of central symmetry for fields of convex figures and three-dimensional convex bodies},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {108--118},
     publisher = {mathdoc},
     volume = {372},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a10/}
}
                      
                      
                    TY - JOUR AU - V. V. Makeev TI - On measure of central symmetry for fields of convex figures and three-dimensional convex bodies JO - Zapiski Nauchnykh Seminarov POMI PY - 2009 SP - 108 EP - 118 VL - 372 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a10/ LA - ru ID - ZNSL_2009_372_a10 ER -
V. V. Makeev. On measure of central symmetry for fields of convex figures and three-dimensional convex bodies. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 108-118. http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a10/