A new example of hyperbolic virtual polytope
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 19-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A new example of hyperbolic virtual polytope with four horns is constructed. The corresponding smooth hyperbolic hedgehog is not isotopic to the familiar example by Y. Martinez-Maure since the two hedgehogs generate nonisotopic configurations of great semi-circles on the two-sphere. Certain extrinsic-geometric properties of the polytope are established. Bibl. – 11 titles.
@article{ZNSL_2009_372_a1,
     author = {M. G. Knyazeva},
     title = {A new example of hyperbolic virtual polytope},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {19--33},
     year = {2009},
     volume = {372},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a1/}
}
TY  - JOUR
AU  - M. G. Knyazeva
TI  - A new example of hyperbolic virtual polytope
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 19
EP  - 33
VL  - 372
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a1/
LA  - ru
ID  - ZNSL_2009_372_a1
ER  - 
%0 Journal Article
%A M. G. Knyazeva
%T A new example of hyperbolic virtual polytope
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 19-33
%V 372
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a1/
%G ru
%F ZNSL_2009_372_a1
M. G. Knyazeva. A new example of hyperbolic virtual polytope. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 19-33. http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a1/

[1] A. D. Aleksandrov, “O teoremakh edinstvennosti dlya zamknutykh poverkhnostei”, DAN SSSR, 22:3 (1939), 99–102

[2] Y. Martinez-Maure, “Contre-exemple à une caractérisation conjecturée de la sphère”, C. R. Acad. Sci. Paris Ser. I Math., 332:1 (2001), 41–44 | DOI | MR | Zbl

[3] Y. Martinez-Maure, “Théorie des hérissons et polytopes”, C. R. Acad. Sci. Paris Ser. I Math., 336:3 (2003), 241–244 | DOI | MR | Zbl

[4] A. V. Pukhlikov, A. G. Khovanskii, “Konechno-additivnye mery virtualnykh mnogogrannikov”, Algebra i Analiz, 4:2 (1992), 161–185 | MR | Zbl

[5] G. Panina, “On hyperbolic virtual polytopes and hyperbolic fans”, Central Europ. J. Math., 4:2 (2006), 270–293 | DOI | MR | Zbl

[6] G. Panina, “New counterexamples to A. D. Alexandrov's hypothesis”, Adv. Geometry, 5:2 (2005), 301–317 | DOI | MR | Zbl

[7] G. Panina, “Isotopy problems for saddle surfaces”, Europ. J. Comb. (to appear)

[8] R. Langevin, G. Levitt, H. Rosenberg, “Hérissons et multihérissons (enveloppes paramétrées par leur application de Gauss)”, Banach Center Publ., 20 (1985), 245–253 | MR

[9] M. Knyazeva, G. Panina, “An illustrated theory of hyperbolic polytopes”, Cent. Eur. J. Math., 6 (2008), 204–217 | DOI | MR | Zbl

[10] D. Koutroufiotis, “On a conjectured characterization of the sphere”, Math. Ann., 205 (1973), 211–217 | DOI | MR | Zbl

[11] H. F. Münzner, “Über eine spezielle Klasse von Nabelpunkten und analoge Singularitäten in der zentroaffinen Flächentheorie”, Comment. Math. Helv., 41 (1966/1967), 88–104 | DOI | MR | Zbl