@article{ZNSL_2009_372_a1,
author = {M. G. Knyazeva},
title = {A new example of hyperbolic virtual polytope},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {19--33},
year = {2009},
volume = {372},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a1/}
}
M. G. Knyazeva. A new example of hyperbolic virtual polytope. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 11, Tome 372 (2009), pp. 19-33. http://geodesic.mathdoc.fr/item/ZNSL_2009_372_a1/
[1] A. D. Aleksandrov, “O teoremakh edinstvennosti dlya zamknutykh poverkhnostei”, DAN SSSR, 22:3 (1939), 99–102
[2] Y. Martinez-Maure, “Contre-exemple à une caractérisation conjecturée de la sphère”, C. R. Acad. Sci. Paris Ser. I Math., 332:1 (2001), 41–44 | DOI | MR | Zbl
[3] Y. Martinez-Maure, “Théorie des hérissons et polytopes”, C. R. Acad. Sci. Paris Ser. I Math., 336:3 (2003), 241–244 | DOI | MR | Zbl
[4] A. V. Pukhlikov, A. G. Khovanskii, “Konechno-additivnye mery virtualnykh mnogogrannikov”, Algebra i Analiz, 4:2 (1992), 161–185 | MR | Zbl
[5] G. Panina, “On hyperbolic virtual polytopes and hyperbolic fans”, Central Europ. J. Math., 4:2 (2006), 270–293 | DOI | MR | Zbl
[6] G. Panina, “New counterexamples to A. D. Alexandrov's hypothesis”, Adv. Geometry, 5:2 (2005), 301–317 | DOI | MR | Zbl
[7] G. Panina, “Isotopy problems for saddle surfaces”, Europ. J. Comb. (to appear)
[8] R. Langevin, G. Levitt, H. Rosenberg, “Hérissons et multihérissons (enveloppes paramétrées par leur application de Gauss)”, Banach Center Publ., 20 (1985), 245–253 | MR
[9] M. Knyazeva, G. Panina, “An illustrated theory of hyperbolic polytopes”, Cent. Eur. J. Math., 6 (2008), 204–217 | DOI | MR | Zbl
[10] D. Koutroufiotis, “On a conjectured characterization of the sphere”, Math. Ann., 205 (1973), 211–217 | DOI | MR | Zbl
[11] H. F. Münzner, “Über eine spezielle Klasse von Nabelpunkten und analoge Singularitäten in der zentroaffinen Flächentheorie”, Comment. Math. Helv., 41 (1966/1967), 88–104 | DOI | MR | Zbl