Computation of the Rankin–Selberg $L$-functions of Maass wave forms
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 24, Tome 371 (2009), pp. 137-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper suggests a method for numerically computing the Rankin–Selberg $L$-functions of Maass wave forms and reports results on computing the zeros of one of such function. Bibl. – 11 titles.
@article{ZNSL_2009_371_a9,
     author = {N. V. Proskurin},
     title = {Computation of the {Rankin{\textendash}Selberg} $L$-functions of {Maass} wave forms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {137--148},
     year = {2009},
     volume = {371},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a9/}
}
TY  - JOUR
AU  - N. V. Proskurin
TI  - Computation of the Rankin–Selberg $L$-functions of Maass wave forms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 137
EP  - 148
VL  - 371
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a9/
LA  - ru
ID  - ZNSL_2009_371_a9
ER  - 
%0 Journal Article
%A N. V. Proskurin
%T Computation of the Rankin–Selberg $L$-functions of Maass wave forms
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 137-148
%V 371
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a9/
%G ru
%F ZNSL_2009_371_a9
N. V. Proskurin. Computation of the Rankin–Selberg $L$-functions of Maass wave forms. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 24, Tome 371 (2009), pp. 137-148. http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a9/

[1] D. A. Heihal, The Selberg Trace Formula for ${\rm PSL}(2,\mathbb R)$, Lecture Notes in Math., 1001, Springer-Verlag, 1983

[2] D. A. Heihal, S. Arno, “On Fourier coefficients of Maass waveforms for ${\rm PSL}(2,\mathbb Z)$”, Math. Comp., 61:203 (1993), 245–267, S11–S16 | DOI | MR

[3] D. A. Heihal, “On eigenfunctions of the Laplacian for Hecke triangle groups”, Emerging applications of number theory (Minneapolis, MN), IMA Vol. Math. Appl., 109, Springer, New York, 1996, 291–315 | MR

[4] H. Iwaniec, Introduction to the Spectral Theory of Automorphic forms, Revista Mathematica Iberoamericana, Madrid, 1995 | MR | Zbl

[5] A. F. Lavrik, “O funktsionalnykh uravneniyakh funktsii Dirikhle”, Izv. AN SSSR. Ser. mat., 31:2 (1967), 431–442 | MR | Zbl

[6] A. F. Lavrik, “Priblizhennye funktsionalnye uravneniya funktsii Dirikhle”, Izv. AN SSSR. Ser. mat., 32:1 (1968), 134–185 | MR | Zbl

[7] H. Maass, “Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktiongleichungen”, Math. Ann., 121 (1949), 141–183 | DOI | MR | Zbl

[8] N. V. Proskurin, “Svërtki ryadov Dirikhle s koeffitsientami Fure parabolicheskikh form vesa 0”, Zap. nauchn. semin. LOMI, 93, 1980, 204–217 | MR | Zbl

[9] A. Strömbergsson, “On the zeros of $L$-functions associated to Maass waveforms”, Inter. Math. Res. Notes, 15 (1999), 839–851 | MR | Zbl

[10] A. Strömbergsson, Studies in the analytic and spectral theory of automorphic forms, Uppsala dissertations in math., 17, Uppsala Univ., 2001 | MR | Zbl

[11] A. B. Venkov, Spectral theory of automorphic functions and its applications, Kluwer Acad. Publ. Group, Dordrecht, 1990 | MR | Zbl