On approximating periodic functions by the Fourier sums
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 24, Tome 371 (2009), pp. 78-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $L_p$, $1\le p<\infty$, be the space of $2\pi$-periodic functions $f$ with the norm $\|f\|_p=(\int^\pi_{-\pi}|f|^p)^{1/p}$, and let $C=L_\infty$ be the space of continuous $2\pi$-periodic functions with the norm $\|f\|_\infty=\|f\|=\max_{x\in\mathbb R}|f(x)|$. Let $CP$ be the subspace of $C$ with a semi-norm $P$ that is invariant with respect to translation and such that $P(f)\le M\|f\|$ for every $f\in C$. By $\sum^\infty_{k=0}A_k(f)$ we denote the Fourier series of the function $f$, and let $\lambda=\{\lambda_k\}^\infty_{k=0}$ be a sequence of real numbers for which $\sum^\infty_{k=0}\lambda_kA_k(f)$ is the Fourier series of a certain function $f_{\lambda}\in L_p$. The paper considers questions related to approximating the function $f_\lambda$ by its Fourier sums $S_n(f_\lambda)$ on a point set and on the spaces $L_p$ and $CP$. Estimates of $\|f_\lambda-S_n(f_\lambda)\|_p$ and $P(f_\lambda-S_n(f_\lambda))$ are obtained by using the structural characteristics (the best approximations and the modules of continuity) of the functions $f$ and $f_\lambda$. As a rule, the essential part of deviation is estimated with the use of the structural characteristics of the function $f$. Bibl. – 11 titles.
@article{ZNSL_2009_371_a6,
     author = {V. V. Zhuk},
     title = {On approximating periodic functions by the {Fourier} sums},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {78--108},
     year = {2009},
     volume = {371},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a6/}
}
TY  - JOUR
AU  - V. V. Zhuk
TI  - On approximating periodic functions by the Fourier sums
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 78
EP  - 108
VL  - 371
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a6/
LA  - ru
ID  - ZNSL_2009_371_a6
ER  - 
%0 Journal Article
%A V. V. Zhuk
%T On approximating periodic functions by the Fourier sums
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 78-108
%V 371
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a6/
%G ru
%F ZNSL_2009_371_a6
V. V. Zhuk. On approximating periodic functions by the Fourier sums. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 24, Tome 371 (2009), pp. 78-108. http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a6/

[1] A. Zigmund, Trigonometricheskie ryady, t. 1, M., 1965

[2] A. Zigmund, Trigonometricheskie ryady, M.–L., 1939

[3] N. K. Bari, Trigonometricheskie ryady, M., 1961 | MR

[4] V. V. Zhuk, G. I. Natanson, Trigonometricheskie ryady Fure i elementy teorii approksimatsii, L., 1983 | MR

[5] V. V. Zhuk, Approksimatsiya periodicheskikh funktsii, L., 1982 | MR

[6] N. I. Akhiezer, Lektsii po teorii approksimatsii, M., 1965

[7] V. V. Zhuk, V. F. Kuzyutin, Approksimatsiya funktsii i chislennoe integrirovanie, CPb., 1995 | MR

[8] V. V. Zhuk, “O nekotorykh prilozheniyakh obyntegrirovannogo ryada Fure”, Vestn. LGU. Ser. mat., mekh., astr., 1966, no. 7, 29–34 | Zbl

[9] R. Salem, “New theorems on the convergence of Fouríer series”, Proc. Konik. Nederland. Akad. Indag. Math., 16 (1954), 550–555 | MR

[10] F. I. Kharshiladze, “Mnozhiteli ravnomernoi skhodimosti i ravnomernaya summiruemost”, Tr. Tbilisk. mat. in-ta, 26 (1959), 121–130

[11] R. Bojanič, “On uniform convergence of Fourier series”, Publ. Inst. math. Acad. serbe sci., 10 (1956), 153–158 | MR | Zbl