A sewing theorem for quadratic differentials
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 24, Tome 371 (2009), pp. 69-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Quadratic differentials on a finite Riemann surface with poles of order not exceeding two are considered. The existence of such a differential with prescribed metrical characteristics is proved. These characteristics are the following: the first coefficients in the expansions of a quadratic differential in neighborhoods of it's poles of order two, the conformal modules of the ring domains, and the heights of the strip domains in the decomposition of the Riemann surface defined by this differential. Bibl. – 5 titles.
@article{ZNSL_2009_371_a5,
     author = {E. G. Emel'yanov},
     title = {A sewing theorem for quadratic differentials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {69--77},
     year = {2009},
     volume = {371},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a5/}
}
TY  - JOUR
AU  - E. G. Emel'yanov
TI  - A sewing theorem for quadratic differentials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 69
EP  - 77
VL  - 371
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a5/
LA  - ru
ID  - ZNSL_2009_371_a5
ER  - 
%0 Journal Article
%A E. G. Emel'yanov
%T A sewing theorem for quadratic differentials
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 69-77
%V 371
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a5/
%G ru
%F ZNSL_2009_371_a5
E. G. Emel'yanov. A sewing theorem for quadratic differentials. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 24, Tome 371 (2009), pp. 69-77. http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a5/

[1] J. A. Jenkins, Univalent functions and conformal mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, 18, Springer-Verlag, Berlin, 1958, 169 pp. ; 2nd ed. corrected, 1965; Dzh. Dzhenkins, Odnolistnye funktsii i konformnye otobrazheniya, M., 1962 | MR | Zbl

[2] P. M. Tamrazov, “Tchebotarov's extremal problem”, Cent. Eur. J. Math., 3:4 (2003), 591–605 | DOI | MR

[3] P. M. Tamrazov, “Tchebotarov's problem”, C. R. Math. Acad. Sci. Paris, 341:7 (2005), 404–408 | DOI | MR

[4] A. Yu. Solynin, “Quadratic differentials and weighted graphs on compact surfaces”, Analysis and Mathematical Physics, Trend in Mathematics, Birkhäuser Verlag, Basel, 2009, 473–505 | MR

[5] E. G. Emelyanov, G. V. Kuzmina, “Teoremy ob ekstremalnom razbienii v semeistvakh sistem oblastei razlichnykh tipov”, Zap. nauchn. semin. POMI, 237, 1997, 74–104 | MR | Zbl