On I.\,P.~Mityuk's results on the the behavior of the inner radius of a~domain and the condenser's capacity under regular mappings
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 24, Tome 371 (2009), pp. 37-55

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical Lindelöf principle on the behavior of Green's function under a regular mapping is generalized to the case of Robinson's function with a pole at a boundary point. In addition reverse inequalities in the Lindelöf principle are considered. As corollaries, certain analogs of Mityuk's theorems on the behavior of the inner radius of a domain are established. Also we supplement a special case of a Mityuk's theorems and a Kloke's result on the change of the condenser capacity under a multivalent mapping. Bibl. – 19 titles.
@article{ZNSL_2009_371_a3,
     author = {V. N. Dubinin},
     title = {On {I.\,P.~Mityuk's} results on the the behavior of the inner radius of a~domain and the condenser's capacity under regular mappings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {37--55},
     publisher = {mathdoc},
     volume = {371},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a3/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - On I.\,P.~Mityuk's results on the the behavior of the inner radius of a~domain and the condenser's capacity under regular mappings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 37
EP  - 55
VL  - 371
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a3/
LA  - ru
ID  - ZNSL_2009_371_a3
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T On I.\,P.~Mityuk's results on the the behavior of the inner radius of a~domain and the condenser's capacity under regular mappings
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 37-55
%V 371
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a3/
%G ru
%F ZNSL_2009_371_a3
V. N. Dubinin. On I.\,P.~Mityuk's results on the the behavior of the inner radius of a~domain and the condenser's capacity under regular mappings. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 24, Tome 371 (2009), pp. 37-55. http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a3/