On approximating periodic functions by Riesz sums
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 24, Tome 371 (2009), pp. 18-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $C$ be the space of continuous $2\pi$-periodic functions $f$ with the norm $\|f\|=\max_{x\in\mathbb R}|f(x)|$, $\sigma_n(f)$ be the Fejér sums of $f$, $E_n(f)$ be the best approximation, and let \begin{align*} &X_n(f,a,x)=f(x)-\sigma_n(f,x)\\ &+\frac1{\pi(n+1)}\int^\infty_{a/(n+1)}\frac{f(x+t)+f(x-t)-2f(x)}{t^2}\,dt\\ &+\frac2\pi\sum^\infty_{k=1}\frac{(-1)^ka^{2k-1}\{(E-\sigma_n)^{2k}(f,x)\}}{(2k)!(2k-1)}. \end{align*} Generalizing earlier results by M. Zamanskii and A. V. Efimov, the second author proved that for $f\in C$, the following relation is valid: \begin{equation} \|X_n(f,a)\|\le C(a)E_n(f). \end{equation} The present paper establishes advanced analogs of inequality (1) for the Riesz sums. Bibl. – 9 titles.
@article{ZNSL_2009_371_a2,
     author = {N. Yu. Dodonov and V. V. Zhuk},
     title = {On approximating periodic functions by {Riesz} sums},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {18--36},
     year = {2009},
     volume = {371},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a2/}
}
TY  - JOUR
AU  - N. Yu. Dodonov
AU  - V. V. Zhuk
TI  - On approximating periodic functions by Riesz sums
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 18
EP  - 36
VL  - 371
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a2/
LA  - ru
ID  - ZNSL_2009_371_a2
ER  - 
%0 Journal Article
%A N. Yu. Dodonov
%A V. V. Zhuk
%T On approximating periodic functions by Riesz sums
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 18-36
%V 371
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a2/
%G ru
%F ZNSL_2009_371_a2
N. Yu. Dodonov; V. V. Zhuk. On approximating periodic functions by Riesz sums. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 24, Tome 371 (2009), pp. 18-36. http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a2/

[1] M. Zamansky, “Classes de saturation de certains procédés d'approximation des séries de Fourier des functions continues et applications a quelques problèmes d'approximation”, Ann. Sci. Ecole. norm. sup., 66 (1949), 19–93 | MR | Zbl

[2] A. V. Efimov, “O priblizhenii nekotorykh klassov nepreryvnykh funktsii summami Fure i summami Feiera”, Izv. AN SSSR, ser. mat., 22:1 (1958), 81–116 | MR | Zbl

[3] V. V. Zhuk, V. F. Kuzyutin, Approksimatsiya funktsii i chislennoe integrirovanie, SPb., 1995 | MR

[4] V. V. Zhuk, “O priblizhenii periodicheskikh funktsii summami Feiera i integralom Valle–Pussena”, Vestn. LGU, 1974, no. 13, 18–25 | Zbl

[5] V. V. Zhuk, “O priblizhenii nepreryvnykh periodicheskikh funktsii lineinymi metodami summirovaniya ryadov Fure”, Vestn. LGU, 1974, no. 19, 25–31

[6] M. A. Skopina, “Ob asimptoticheskikh formulakh dlya uklonenii lineinykh metodov summirovaniya dvoinykh ryadov Fure”, Zap. nauch. semin. LOMI, 80, 1978, 189–196 | MR | Zbl

[7] N. Yu. Dodonov, V. V. Zhuk, “Otsenki funktsionalov posredstvom otklonenii summ Rissa v polunormirovannykh prostranstvakh”, Prob. mat. anal., 40 (2009), 57–68 | MR | Zbl

[8] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, M., 1996 | MR

[9] V. V. Zhuk, S. Yu. Pimenov, “O normakh summ Akhiezera–Kreina–Favara”, Vestn. SPbGU. Ser. 10, 2006, no. 4, 34–47