On approximating periodic functions by Riesz sums
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 24, Tome 371 (2009), pp. 18-36
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $C$ be the space of continuous $2\pi$-periodic functions $f$ with the norm $\|f\|=\max_{x\in\mathbb R}|f(x)|$, $\sigma_n(f)$ be the Fejér sums of $f$, $E_n(f)$ be the best approximation, and let 
\begin{align*}
(f,a,x)=f(x)-\sigma_n(f,x)\\
+\frac1{\pi(n+1)}\int^\infty_{a/(n+1)}\frac{f(x+t)+f(x-t)-2f(x)}{t^2}\,dt\\
+\frac2\pi\sum^\infty_{k=1}\frac{(-1)^ka^{2k-1}\{(E-\sigma_n)^{2k}(f,x)\}}{(2k)!(2k-1)}.
\end{align*}
Generalizing earlier results by M. Zamanskii and A. V. Efimov, the second author proved that for $f\in C$, the following relation is valid:
\begin{equation}
\|X_n(f,a)\|\le C(a)E_n(f).
\end{equation}
The present paper establishes advanced analogs of inequality (1) for the Riesz sums. Bibl. – 9 titles.
			
            
            
            
          
        
      @article{ZNSL_2009_371_a2,
     author = {N. Yu. Dodonov and V. V. Zhuk},
     title = {On approximating periodic functions by {Riesz} sums},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {18--36},
     publisher = {mathdoc},
     volume = {371},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a2/}
}
                      
                      
                    N. Yu. Dodonov; V. V. Zhuk. On approximating periodic functions by Riesz sums. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 24, Tome 371 (2009), pp. 18-36. http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a2/