On distortion theorems for typically real functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 24, Tome 371 (2009), pp. 171-175
Cet article a éte moissonné depuis la source Math-Net.Ru
The author's investigation in the class $T$ of typically real functions $f(z)$ in the disk $|z|<1$ are prolonged. The region of values of $f'(z_1)$ in the class of functions $f\in T$ with fixed values $f(z_1)$ and $f(r_j)$ $(j=1,2)$ is determined. Here $|z_1|<1$, $\operatorname{Im}z_1\ne0$, $0 $(j=1,2)$. Bibl. – 4 titles.
@article{ZNSL_2009_371_a12,
author = {E. G. Goluzina},
title = {On distortion theorems for typically real functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {171--175},
year = {2009},
volume = {371},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a12/}
}
E. G. Goluzina. On distortion theorems for typically real functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 24, Tome 371 (2009), pp. 171-175. http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a12/
[1] E. G. Goluzina, “O mnozhestve znachenii sistem $\{f(z_1),f'(z_1)\}$ i $\{f(z_1),f(z_2)\}$ v klasse tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 254, 1998, 65–75 | MR | Zbl
[2] E. G. Goluzina, “O mnozhestve znachenii sistem $\{f(z_1),f(z_2),f'(z_2)\}$ i $\{f(z_1),f'(z_1),f''(z_1)\}$ v klasse tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 286, 2002, 48–61 | MR | Zbl
[3] E. G. Goluzina, “Ob odnoi teoreme iskazheniya dlya tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 357, 2008, 33–45 | MR
[4] E. G. Goluzina, “O mnozhestve znachenii sistemy $\{f(z_1),f(z_2),f(z_3)\}$ v klasse tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 302, 2003, 5–17 | MR