On Epstein's zeta function.~II
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 24, Tome 371 (2009), pp. 157-170

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\zeta_3(s)$ be the Epstein zeta function associated with $x^2_1+x^2_2+x^2_3$. We investigate the behavior as $T\to\infty$ of the mean values $$ \int^T_1|\zeta_3(1+it)|^2\,dt\quad\text{and}\quad\int^T_1|\zeta_3(\sigma+it)|^2\,dt, $$ $\sigma>1$. Also we discuss the hypothetical distribution of the zeros of $\zeta_3(s)$ in the strip $0\le\sigma\le3/2$. Bibl. – 20 titles.
@article{ZNSL_2009_371_a11,
     author = {O. M. Fomenko},
     title = {On {Epstein's} zeta {function.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {157--170},
     publisher = {mathdoc},
     volume = {371},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a11/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - On Epstein's zeta function.~II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 157
EP  - 170
VL  - 371
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a11/
LA  - ru
ID  - ZNSL_2009_371_a11
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T On Epstein's zeta function.~II
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 157-170
%V 371
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a11/
%G ru
%F ZNSL_2009_371_a11
O. M. Fomenko. On Epstein's zeta function.~II. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 24, Tome 371 (2009), pp. 157-170. http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a11/