@article{ZNSL_2009_371_a11,
author = {O. M. Fomenko},
title = {On {Epstein's} zeta {function.~II}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {157--170},
year = {2009},
volume = {371},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a11/}
}
O. M. Fomenko. On Epstein's zeta function. II. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 24, Tome 371 (2009), pp. 157-170. http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a11/
[1] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd, The Clarendon Press Oxford University Press, New York, 1986, Edited and with a preface by D. R. Heath-Brown | MR
[2] O. M. Fomenko, “O dzeta-funktsii Epshteina”, Zap. nauchn. semin. POMI, 286, 2002, 169–178 | MR | Zbl
[3] K. Chandrasekharan, R. Narasimhan, “The approximate functional equation for a class of zeta-functions”, Math. Ann., 152 (1963), 30–64 | DOI | MR | Zbl
[4] W. Müller, “The mean square of Dirichlet series associated with automorphic forms”, Monatsh. Math., 113 (1992), 121–159 | DOI | MR | Zbl
[5] K. Ramachandra, “Application of a theorem of Montgomery and Vaughan to the zeta-function”, J. London Math. Soc. (2), 10 (1975), 482–486 | DOI | MR | Zbl
[6] A. E. Ingham, “Mean value theorems in the theory of the Riemann zeta-function”, Proc. London. Math. Soc., 27 (1928), 273–300 | DOI
[7] H. L. Montgomery, R. C. Vaughan, “Hilbert's inequality”, J. London Math. Soc. (2), 8 (1974), 73–82 | DOI | MR | Zbl
[8] O. M. Fomenko, “Raspredelenie tselykh tochek na nekotorykh poverkhnostyakh vtorogo poryadka”, Zap. nauchn. semin. POMI, 212, 1994, 164–195 | MR | Zbl
[9] K. Ramachandra, A. Sankaranarayanan, “Hardy's theorem for zeta-functions of quadratic forms”, Proc. Indian Acad. Sci. (Math. Sci.), 106:3 (1996), 217–226 | DOI | MR | Zbl
[10] C. L. Siegel, “Contribution to the theory of the Dirichlet $L$-series and the Epstein zeta-function”, Ann. Math., 44 (1943), 143–172 | DOI | MR | Zbl
[11] B. C. Berndt, “The number of zeros for $\varsigma^{(k)}(s)$”, J. London Math. Soc. (2), 2 (1970), 577–580 | MR | Zbl
[12] E. C. Titchmarsh, Theory of functions, Oxford, 1932
[13] E. Landau, “Über die Hardysche Entdeckung unendlich vieler Nullstellen der Zetafunktion mit reellem Teil $\frac12$”, Math. Ann., 76 (1915), 212–243 | DOI | MR | Zbl
[14] E. Hecke, “Über Dirichlet–Reihen mit Funktionalgleichung und ihre Nullstellen auf der Mittelgeraden”, Mathematische Werke, Vandenhoeck und Ruprecht, Göttingen, 1983, 708–730
[15] V. G. Zhuravlev, “Nuli ryadov Dirikhle s funktsionalnym uravneniem na kriticheskoi pryamoi”, Sbornik issledovanii po teorii funktsii i funktsionalnomu analizu, Vladimir, 1974, 52–64
[16] A. F. Lavrik, “Priblizhennoe funktsionalnoe uravnenie dzeta-funktsii Gekke mnimogo kvadratichnogo polya”, Mat. zametki, 2:5 (1967), 475–482 | MR | Zbl
[17] A. F. Lavrik, “O funktsionalnykh uravneniyakh funktsiii Dirikhle”, Izv. AN SSSR. Seriya mat., 31:2 (1967), 431–442 | MR | Zbl
[18] R. M. Kaufman, “Ob ukorochennykh uravneniyakh A. F. Lavrika”, Zap. nauchn. semin. LOMI, 76, 1978, 124–158 | MR | Zbl
[19] N. V. Proskurin, “O ryadakh Dirikhle, assotsiirovannykh s kubicheskoi teta-funktsiei”, Zap. nauchn. semin. POMI, 337, 2006, 212–232 | MR | Zbl
[20] N. V. Proskurin, “O nulyakh $L$-funktsii, assotsiirovannoi s kubicheskoi teta-funktsiei”, Zap. nauchn. semin. POMI, 350, 2007, 173–186 | MR