@article{ZNSL_2009_371_a10,
author = {A. Yu. Solynin},
title = {Elliptic operators and {Choquet's} capacities},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {149--156},
year = {2009},
volume = {371},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a10/}
}
A. Yu. Solynin. Elliptic operators and Choquet's capacities. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 24, Tome 371 (2009), pp. 149-156. http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a10/
[1] W. K. Hayman, P. B. Kennedy, Subharmonic functions, vol. I, London Mathematical Society Monographs, 9, Academic Press, London–New York, 1976 | MR | Zbl
[2] G. Choquet, “Theory of capacities”, Annales Inst. Fourier, Grenoble, 5 (1953–1954), 131–295 (1955) | DOI | MR
[3] V. G. Mazya, Prostranstva S. L. Soboleva, L., 1985 | MR | Zbl
[4] I. P. Mityuk, “Otsenka sverkhu dlya proizvedeniya vnutrennikh radiusov oblastei i teoremy pokrytiya”, Izv. vuzov. Matematika, 1987, no. 8, 39–47 | MR | Zbl
[5] I. P. Mityuk, “Otsenka snizu summy emkostei kondensatorov”, Ukr. mat. zh., 42:3 (1990), 390–393 | MR | Zbl
[6] I. P. Mityuk, A. Yu. Solynin, “Uporyadochivanie sistem oblastei i kondensatorov v prostranstve”, Izv. vuzov. Matematika, 1991, no. 8, 54–59 | MR | Zbl
[7] D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order, Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001 | MR | Zbl
[8] A. Henrot, “Continuity with respect to the domain for the Laplacian: a survey”, Shape design and optimization. Control Cybernet, 23:3 (1994), 427–443 | MR | Zbl
[9] A. Yu. Solynin, “Uporyadochivanie mnozhestv, giperbolicheskaya metrika i garmonicheskaya mera”, Zap. nauchn. semin. POMI, 237, 1997, 129–147 | MR | Zbl
[10] A. F. Beardon, D. Minda, “The hyperbolic metric and geometric function theory”, Quasiconformal mappings and their applications, Narosa, New Delhi, 2007, 9–56 | MR | Zbl
[11] S. Agard, “Distortion theorems for quasiconformal mappings”, Ann. Acad. Sci. Fenn. A I Math., 413 (1968), 1–12 | MR