Elliptic operators and Choquet's capacities
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 24, Tome 371 (2009), pp. 149-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, the Choquet capacities generated by solutions of some elliptic partial differential equations are discussed. Bibl. – 11 titles.
@article{ZNSL_2009_371_a10,
     author = {A. Yu. Solynin},
     title = {Elliptic operators and {Choquet's} capacities},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {149--156},
     year = {2009},
     volume = {371},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a10/}
}
TY  - JOUR
AU  - A. Yu. Solynin
TI  - Elliptic operators and Choquet's capacities
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 149
EP  - 156
VL  - 371
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a10/
LA  - ru
ID  - ZNSL_2009_371_a10
ER  - 
%0 Journal Article
%A A. Yu. Solynin
%T Elliptic operators and Choquet's capacities
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 149-156
%V 371
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a10/
%G ru
%F ZNSL_2009_371_a10
A. Yu. Solynin. Elliptic operators and Choquet's capacities. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 24, Tome 371 (2009), pp. 149-156. http://geodesic.mathdoc.fr/item/ZNSL_2009_371_a10/

[1] W. K. Hayman, P. B. Kennedy, Subharmonic functions, vol. I, London Mathematical Society Monographs, 9, Academic Press, London–New York, 1976 | MR | Zbl

[2] G. Choquet, “Theory of capacities”, Annales Inst. Fourier, Grenoble, 5 (1953–1954), 131–295 (1955) | DOI | MR

[3] V. G. Mazya, Prostranstva S. L. Soboleva, L., 1985 | MR | Zbl

[4] I. P. Mityuk, “Otsenka sverkhu dlya proizvedeniya vnutrennikh radiusov oblastei i teoremy pokrytiya”, Izv. vuzov. Matematika, 1987, no. 8, 39–47 | MR | Zbl

[5] I. P. Mityuk, “Otsenka snizu summy emkostei kondensatorov”, Ukr. mat. zh., 42:3 (1990), 390–393 | MR | Zbl

[6] I. P. Mityuk, A. Yu. Solynin, “Uporyadochivanie sistem oblastei i kondensatorov v prostranstve”, Izv. vuzov. Matematika, 1991, no. 8, 54–59 | MR | Zbl

[7] D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order, Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001 | MR | Zbl

[8] A. Henrot, “Continuity with respect to the domain for the Laplacian: a survey”, Shape design and optimization. Control Cybernet, 23:3 (1994), 427–443 | MR | Zbl

[9] A. Yu. Solynin, “Uporyadochivanie mnozhestv, giperbolicheskaya metrika i garmonicheskaya mera”, Zap. nauchn. semin. POMI, 237, 1997, 129–147 | MR | Zbl

[10] A. F. Beardon, D. Minda, “The hyperbolic metric and geometric function theory”, Quasiconformal mappings and their applications, Narosa, New Delhi, 2007, 9–56 | MR | Zbl

[11] S. Agard, “Distortion theorems for quasiconformal mappings”, Ann. Acad. Sci. Fenn. A I Math., 413 (1968), 1–12 | MR