A note on local boundary regularity for the Stokes system
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 40, Tome 370 (2009), pp. 151-159

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, local boundary regularity of weak solutions to the non-stationary Stokes system is studied. Under reasonable conditions, existence of the first derivative in time and the second spatial derivatives of the the velocity field and their higher integrability with respect to spatial variables are proved. Bibl. – 3 titles.
@article{ZNSL_2009_370_a8,
     author = {G. A. Seregin},
     title = {A note on local boundary regularity for the {Stokes} system},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {151--159},
     publisher = {mathdoc},
     volume = {370},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_370_a8/}
}
TY  - JOUR
AU  - G. A. Seregin
TI  - A note on local boundary regularity for the Stokes system
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 151
EP  - 159
VL  - 370
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_370_a8/
LA  - en
ID  - ZNSL_2009_370_a8
ER  - 
%0 Journal Article
%A G. A. Seregin
%T A note on local boundary regularity for the Stokes system
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 151-159
%V 370
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_370_a8/
%G en
%F ZNSL_2009_370_a8
G. A. Seregin. A note on local boundary regularity for the Stokes system. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 40, Tome 370 (2009), pp. 151-159. http://geodesic.mathdoc.fr/item/ZNSL_2009_370_a8/