@article{ZNSL_2009_370_a7,
author = {S. I. Repin},
title = {Estimates of deviations from exact solutions of variational problems with linear growth functionals},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {132--150},
year = {2009},
volume = {370},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_370_a7/}
}
S. I. Repin. Estimates of deviations from exact solutions of variational problems with linear growth functionals. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 40, Tome 370 (2009), pp. 132-150. http://geodesic.mathdoc.fr/item/ZNSL_2009_370_a7/
[1] G. Acosta, R. Duran, “An optimal Poincaré inequality in $L^1$ for convex domains”, Proceesings of the American Mathematical Society, 132 (2003), 195–202 | DOI | MR
[2] G. Anzellotti, M. Giaquinta, “Existence of the displacements field for an elastic-plastic body subjected to Hencky's law and von Mises yield condition”, Manuscripta Math., 32 (1980), 101–136 | DOI | MR | Zbl
[3] M. Bildhauer, Convex Variational Problems, Lecture Notes in Mathematics, 1818, Springer, Berlin, 2003 | DOI | MR | Zbl
[4] M. Bildhauer, M. Fuchs, S. Repin, “The elasto-plastic torsion problem: a posteriori estimates for approximate solutions”, Numer. Functional Analysis and Optimization, 30 (2009), 653–664 | DOI | MR | Zbl
[5] I. Ekeland, R. Temam, Convex Analysis and Variational Problems, North-Holland, New York, 1976 | MR | Zbl
[6] R. Finn, Equilibrium capillary surfaces, Springer, New York, 1986 | MR | Zbl
[7] J. Freshe, J. Malek, Asymptotic error estimates for finite element approximations in elasto-perfect plasticity, Preprint, 1994
[8] M. Fuchs, S. Repin, “Functional a posteriori error estimates for variational inequalities describing the stationary flow of certain viscous incompressible fluids”, Math. Mathematical Methods in Applied Sciences (M2AS) (to appear)
[9] M. Fuchs, G. A. Seregin, Variational methods for problems from plasticity theory and for generalized Newtonian fluids, Lect. Notes in Mathematics, 1749, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl
[10] M. Giaquinta, G. Modica, J. Souček, “Functionals with linear growth in the calculus of variations”, Comm. Math. Univ. Carolinae, 20 (1979), 143–171 | MR
[11] E. Giusti, Minimal surfaces and functions of bounded variation, Birkhauser, Boston, 1984 | MR | Zbl
[12] C. Johnson, V. Thomee, “Error estimates for a finite element approximation of a minimal surface”, Math. Comput., 29 (1975), 343–349 | DOI | MR
[13] C. Jouron, “Résolution nummérique du probleme des surfaces minima”, Arch. Rat. Mech. Anal., 59 (1975), 311–341 | DOI | MR
[14] O. A. Ladyzhenskaya, N. N. Uraltseva, “Local estimates for gradients of solutions of non-uniformly elliptic and parabolic equations”, Comm. Pure. Appl. Math., 23 (1970), 677–703 | DOI | MR | Zbl
[15] S. G. Mikhlin, Variational Methods in Mathematical Physics, Pergamon, Oxford, 1964 | MR | Zbl
[16] P. Mosolov, V. Myasnikov, Mechanics of rigid plastic bodies, Nauka, M., 1981 (Russian) | MR | Zbl
[17] P. Neittaanmaki, S. Repin, V. Rivkind, “Discontinuous finite element approximations for functionals with linear growth”, East-West J. Numer. Math., 2:3 (1994), 212–228 | MR
[18] L. E. Payne, H. F. Weinberger, “An optimal Poincaré inequality for convex domains”, Arch. Rat. Mech. Anal., 5 (1960), 286–292 | DOI | MR | Zbl
[19] S. Repin, “Variational-difference method for problems of perfect plasticity using discontinuous conventional finite elements method”, Zh. Vychisl. Mat. i Mat. Fiz., 28 (1988), 449–453 (Russian) | Zbl
[20] S. Repin, “Variational-difference method for solving problems with functionals of linear growth”, Zh. Vychisl. Mat. i Mat. Fiz., 29:5 (1989), 693–708 (Russian) | MR
[21] S. Repin, “Numerical analysis of no nonsmooth variational problems of perfect plasticity”, Russ. J. Numer. Anal. Math. Modell., 9:1 (1994), 61–74 | DOI | MR | Zbl
[22] S. Repin, “A priori error estimates of variational-difference methods for Hencky plasticity problems”, Zap. Nauchn. Semin. V. A. Steklov Mathematical Institute (POMI), 221, 1995, 226–234 | MR | Zbl
[23] S. Repin, “Errors of finite element methods for perfectly elasto-plastic problems”, Math. Models Methods Appl. Sci., 6 (1996), 587–604 | DOI | MR | Zbl
[24] S. Repin, “A posteriori error estimation for nonlinear variational problems by duality theory”, Zap. Nauchn. Semin. V. A. Steklov Mathematical Institute (POMI), 243, 1997, 201–214 | MR | Zbl
[25] S. Repin, “Estimates of deviations from exact solutions of variational inequalities based upon Payne–Weinberger inequality”, J. Math. Sci. (N.Y.), 157 (2009), 874–884 | DOI | MR | Zbl
[26] St.-Petersburg Mathematical Journal, 11:4 (2000), 651–672 | MR | Zbl
[27] S. Repin, “A posteriori error estimates for variational problems with uniformly convex functionals”, Math. Comput., 69:230 (2000), 481–500 | DOI | MR | Zbl
[28] Amer. Math. Soc. Transl. Ser. 2, 209, Amer. Math. Soc., Providence, RI, 2003, 143–171 | MR | MR | Zbl
[29] St.-Petersburg Mathematical Journal, 11 (2000), 651–672 | MR | Zbl
[30] S. Repin, A posteriori estimates for partial differential equations, Walter de Gruyter, Berlin, 2008 | MR
[31] S. Repin, G. Seregin, “Error estimates for stresses in the finite element analysis of the two-dimensional elasto-plastic problems”, Internat. J. Engrg. Sci., 33 (1995), 255–268 | DOI | MR | Zbl
[32] S. Repin, G. Seregin, “Existence of a weak solutions of the minimax problem in Coulomb-Mohr plasticity”, Nonlinear evolution equations, Amer. Math. Soc. Transl. Ser. 2, 164, Amer. Math. Soc., Providence, RI, 1995, 189–220 | MR | Zbl
[33] G. Seregin, “Variational-difference scheme for problems in the mechanics of ideally elastoplastic media”, Zh. Vychisl. Mat. i Mat. Fiz., 25:2 (1985), 237–253 | MR | Zbl
[34] Sov. Phys. Dokl., 29:5 (1984), 396–398 | MR | Zbl
[35] P. Suquet, “Existence et regularite des solutions des equations de la plasticite parfaite”, C. R. Acad. Sc. Paris Serie D, 286 (1978), 1201–1204 | MR | Zbl
[36] R. Temam, Problemes mathématiques en plasticité, Bordas, Paris, 1983 | MR | Zbl