Two-sided a posteriori error bounds for electro-magneto static problems
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 40, Tome 370 (2009), pp. 94-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper is concerned with the derivation of computable and guaranteed upper and lower bounds of the difference between the exact and the approximate solution of a boundary value problem for static Maxwell equations. Our analysis is based upon purely functional argumentation and does not attract specific properties of an approximation method. Therefore, the estimates derived in the paper at hand are applicable to any approximate solution that belongs to the corresponding energy space. Such estimates (also called error majorants of the functional type) have been derived earlier for elliptic problems [19, 20]. Bibl. – 24 titles.
@article{ZNSL_2009_370_a5,
     author = {D. Pauly and S. Repin},
     title = {Two-sided a~posteriori error bounds for electro-magneto static problems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {94--110},
     year = {2009},
     volume = {370},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_370_a5/}
}
TY  - JOUR
AU  - D. Pauly
AU  - S. Repin
TI  - Two-sided a posteriori error bounds for electro-magneto static problems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 94
EP  - 110
VL  - 370
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_370_a5/
LA  - en
ID  - ZNSL_2009_370_a5
ER  - 
%0 Journal Article
%A D. Pauly
%A S. Repin
%T Two-sided a posteriori error bounds for electro-magneto static problems
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 94-110
%V 370
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_370_a5/
%G en
%F ZNSL_2009_370_a5
D. Pauly; S. Repin. Two-sided a posteriori error bounds for electro-magneto static problems. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 40, Tome 370 (2009), pp. 94-110. http://geodesic.mathdoc.fr/item/ZNSL_2009_370_a5/

[1] A. Alonso, A. Valli, “Some remarks on the characterization of the space of tangential traces of $H(\mathrm{rot},\Omega)$ and the construction of an extension operator”, Manuscripta Math., 89 (1996), 159–178 | DOI | MR | Zbl

[2] I. Anjam, O. Mali, A. Muzalevsky, P. Neittaanmäki, S. Repin, “A posteriori error estimates for a Maxwell type problem”, Russian J. Numer. Anal. Math. Modeling, 24:5 (2009), 395–408 | DOI | MR | Zbl

[3] A. Buffa, J. P. Ciarlet, “On traces for functional spaces related to Maxwell's equations. Part I: An integrations by parts formula in Lipschitz polyhedra”, Math. Methods Appl. Sci., 24 (2001), 9–30 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[4] A. Buffa, M. Costabel, D. Sheen, “On traces for $H(\mathrm{curl},\Omega)$ in Lipschitz domains”, J. Math. Anal. Appl., 276 (2002), 845–867 | DOI | MR | Zbl

[5] P. Kuhn, Die Maxwellgleichung mit wechselnden Randbedingungen, Shaker Verlag, Essen, 1999

[6] P. Kuhn, D. Pauly, Generalized Maxwell Equations in Exterior Domains. I: Regularity Results, Trace Theorems and Static Solution Theory, Report, Department of Mathematical Information Technology, University of Jyväskylä, Series B. Sci. Comp. No B 7, 2007

[7] P. Kuhn, D. Pauly, “Regularity results for generalized electro-magnetic problems”, Analysis (Munich), 2009 (to appear) | MR

[8] R. Leis, Initial Boundary Value Problems in Mathematical Physics, Teubner, Stuttgart, 1986 | MR | Zbl

[9] A. Milani, R. Picard, “Decomposition theorems and their applications to nonlinear electro- and magneto-static boundary value problems”, Partial Differential Equations and Calculus of Variations, Lect. Notes Math., 1357, Springer, Berlin–New York, 1988, 317–340 | DOI | MR

[10] D. Pauly, “Generalized electro-magneto statics in nonsmooth exterior domains”, Analysis (Munich), 27:4 (2007), 425–464 | MR | Zbl

[11] D. Pauly, “Hodge–Helmholtz decompositions of weighted Sobolev spaces in irregular exterior domains with Inhomogeneous and anisotropic media”, Math. Methods Appl. Sci., 31:13 (2008), 1509–1543 | DOI | MR | Zbl

[12] D. Pauly, S. Repin, “Functional a posteriori error estimates for elliptic problems in exterior domains”, J. Math. Sci. (N.Y.), 162:3 (2009), 393–406 | DOI

[13] D. Pauly, T. Rossi, Computation of Generalized Time-Periodic Waves using Differential Forms, Controllability, Least-Squares Formulation, Conjugate Gradient Method and Discrete Exterior Calculus. Part I: Theoretical Considerations, Report, Department of Mathematical Information Technology, University of Jyväskylä, Series B. Sci. Comp. No B 16, 2008

[14] R. Picard, “Randwertaufgaben der verallgemeinerten Potentialtheorie”, Math. Meth. Appl. Sci., 3 (1981), 218–228 | DOI | MR | Zbl

[15] R. Picard, “On the boundary value problems of electro- and magnetostatics”, Proc. Roy. Soc. Edinburgh Sect. A, 92 (1982), 165–174 | DOI | MR | Zbl

[16] R. Picard, “An elementary proof for a compact imbedding result in generalized electromagnetic theory”, Math. Z., 187 (1984), 151–164 | DOI | MR | Zbl

[17] R. Picard, “Some decomposition theorems their applications to nonlinear potential theory and Hodge theory”, Math. Methods Appl. Sci., 12 (1990), 35–53 | DOI | MR

[18] R. Picard, N. Weck, K. J. Witsch, “Time-harmonic Maxwell equations in the exterior of perfectly conducting, irregular obstacles”, Analysis (Munich), 21 (2001), 231–263 | MR | Zbl

[19] S. Repin, “A posteriori error estimates for variational problems with uniformly convex functionals”, Math. Comp., 69:230 (2000), 481–500 | DOI | MR | Zbl

[20] S. Repin, A posteriori estimates for partial differential equations, Radon Series Comp. Appl. Math., 4, Walter de Gruyter, Berlin, 2008 | DOI | MR

[21] C. Weber, “A local compactness theorem for Maxwell's equations”, Math. Methods Appl. Sci., 2 (1980), 12–25 | DOI | MR | Zbl

[22] N. Weck, “Maxwell's boundary value problems on Riemannian manifolds with nonsmooth boundaries”, J. Math. Anal. Appl., 46 (1974), 410–437 | DOI | MR | Zbl

[23] N. Weck, “Traces of differential forms on Lipschitz boundaries”, Analysis (Munich), 24 (2004), 147–169 | MR | Zbl

[24] K. J. Witsch, “A remark on a compactness result in electromagnetic theory”, Math. Methods Appl. Sci., 16 (1993), 123–129 | DOI | MR | Zbl