@article{ZNSL_2009_370_a5,
author = {D. Pauly and S. Repin},
title = {Two-sided a~posteriori error bounds for electro-magneto static problems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {94--110},
year = {2009},
volume = {370},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_370_a5/}
}
D. Pauly; S. Repin. Two-sided a posteriori error bounds for electro-magneto static problems. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 40, Tome 370 (2009), pp. 94-110. http://geodesic.mathdoc.fr/item/ZNSL_2009_370_a5/
[1] A. Alonso, A. Valli, “Some remarks on the characterization of the space of tangential traces of $H(\mathrm{rot},\Omega)$ and the construction of an extension operator”, Manuscripta Math., 89 (1996), 159–178 | DOI | MR | Zbl
[2] I. Anjam, O. Mali, A. Muzalevsky, P. Neittaanmäki, S. Repin, “A posteriori error estimates for a Maxwell type problem”, Russian J. Numer. Anal. Math. Modeling, 24:5 (2009), 395–408 | DOI | MR | Zbl
[3] A. Buffa, J. P. Ciarlet, “On traces for functional spaces related to Maxwell's equations. Part I: An integrations by parts formula in Lipschitz polyhedra”, Math. Methods Appl. Sci., 24 (2001), 9–30 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[4] A. Buffa, M. Costabel, D. Sheen, “On traces for $H(\mathrm{curl},\Omega)$ in Lipschitz domains”, J. Math. Anal. Appl., 276 (2002), 845–867 | DOI | MR | Zbl
[5] P. Kuhn, Die Maxwellgleichung mit wechselnden Randbedingungen, Shaker Verlag, Essen, 1999
[6] P. Kuhn, D. Pauly, Generalized Maxwell Equations in Exterior Domains. I: Regularity Results, Trace Theorems and Static Solution Theory, Report, Department of Mathematical Information Technology, University of Jyväskylä, Series B. Sci. Comp. No B 7, 2007
[7] P. Kuhn, D. Pauly, “Regularity results for generalized electro-magnetic problems”, Analysis (Munich), 2009 (to appear) | MR
[8] R. Leis, Initial Boundary Value Problems in Mathematical Physics, Teubner, Stuttgart, 1986 | MR | Zbl
[9] A. Milani, R. Picard, “Decomposition theorems and their applications to nonlinear electro- and magneto-static boundary value problems”, Partial Differential Equations and Calculus of Variations, Lect. Notes Math., 1357, Springer, Berlin–New York, 1988, 317–340 | DOI | MR
[10] D. Pauly, “Generalized electro-magneto statics in nonsmooth exterior domains”, Analysis (Munich), 27:4 (2007), 425–464 | MR | Zbl
[11] D. Pauly, “Hodge–Helmholtz decompositions of weighted Sobolev spaces in irregular exterior domains with Inhomogeneous and anisotropic media”, Math. Methods Appl. Sci., 31:13 (2008), 1509–1543 | DOI | MR | Zbl
[12] D. Pauly, S. Repin, “Functional a posteriori error estimates for elliptic problems in exterior domains”, J. Math. Sci. (N.Y.), 162:3 (2009), 393–406 | DOI
[13] D. Pauly, T. Rossi, Computation of Generalized Time-Periodic Waves using Differential Forms, Controllability, Least-Squares Formulation, Conjugate Gradient Method and Discrete Exterior Calculus. Part I: Theoretical Considerations, Report, Department of Mathematical Information Technology, University of Jyväskylä, Series B. Sci. Comp. No B 16, 2008
[14] R. Picard, “Randwertaufgaben der verallgemeinerten Potentialtheorie”, Math. Meth. Appl. Sci., 3 (1981), 218–228 | DOI | MR | Zbl
[15] R. Picard, “On the boundary value problems of electro- and magnetostatics”, Proc. Roy. Soc. Edinburgh Sect. A, 92 (1982), 165–174 | DOI | MR | Zbl
[16] R. Picard, “An elementary proof for a compact imbedding result in generalized electromagnetic theory”, Math. Z., 187 (1984), 151–164 | DOI | MR | Zbl
[17] R. Picard, “Some decomposition theorems their applications to nonlinear potential theory and Hodge theory”, Math. Methods Appl. Sci., 12 (1990), 35–53 | DOI | MR
[18] R. Picard, N. Weck, K. J. Witsch, “Time-harmonic Maxwell equations in the exterior of perfectly conducting, irregular obstacles”, Analysis (Munich), 21 (2001), 231–263 | MR | Zbl
[19] S. Repin, “A posteriori error estimates for variational problems with uniformly convex functionals”, Math. Comp., 69:230 (2000), 481–500 | DOI | MR | Zbl
[20] S. Repin, A posteriori estimates for partial differential equations, Radon Series Comp. Appl. Math., 4, Walter de Gruyter, Berlin, 2008 | DOI | MR
[21] C. Weber, “A local compactness theorem for Maxwell's equations”, Math. Methods Appl. Sci., 2 (1980), 12–25 | DOI | MR | Zbl
[22] N. Weck, “Maxwell's boundary value problems on Riemannian manifolds with nonsmooth boundaries”, J. Math. Anal. Appl., 46 (1974), 410–437 | DOI | MR | Zbl
[23] N. Weck, “Traces of differential forms on Lipschitz boundaries”, Analysis (Munich), 24 (2004), 147–169 | MR | Zbl
[24] K. J. Witsch, “A remark on a compactness result in electromagnetic theory”, Math. Methods Appl. Sci., 16 (1993), 123–129 | DOI | MR | Zbl