On the Stokes problem with nonzero divergence
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 40, Tome 370 (2009), pp. 184-202 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the strong solvability of the nonstationary Stokes problem with nonzero divergence in a bounded domain. Bibl. – 12 titles.
@article{ZNSL_2009_370_a10,
     author = {N. Filonov and T. Shilkin},
     title = {On the {Stokes} problem with nonzero divergence},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {184--202},
     year = {2009},
     volume = {370},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_370_a10/}
}
TY  - JOUR
AU  - N. Filonov
AU  - T. Shilkin
TI  - On the Stokes problem with nonzero divergence
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 184
EP  - 202
VL  - 370
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_370_a10/
LA  - en
ID  - ZNSL_2009_370_a10
ER  - 
%0 Journal Article
%A N. Filonov
%A T. Shilkin
%T On the Stokes problem with nonzero divergence
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 184-202
%V 370
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_370_a10/
%G en
%F ZNSL_2009_370_a10
N. Filonov; T. Shilkin. On the Stokes problem with nonzero divergence. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 40, Tome 370 (2009), pp. 184-202. http://geodesic.mathdoc.fr/item/ZNSL_2009_370_a10/

[1] O. V. Besov, V. P. Il'in, S. M. Nikolskii, Integral Representations of Functions and Imbedding Theorems, Nauka, Moscow, 1975 | MR | Zbl

[2] M. E. Bogovskii, “On solution of some problems of vectoral analysis related to $\mathrm{div}$ and $\mathrm{grad}$ operators”, Proc. of S. L. Sobolev Seminar, 1, 1980, 5–40 | MR

[3] L. Caffarelli, R. V. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl

[4] R. Farwig, H. Sohr, “The stationary and nonstationary Stokes system in exterior domains with nonzero divergence and nonzero boundary data”, Math. Meth. Appl. Sci., 17 (1994), 269–291 | DOI | MR | Zbl

[5] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Linear and quasilinear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, R.I., 1967 | MR

[6] G. A. Seregin, “Some estimates near the boundary for solutions to the nonstationary linearized Navier–Stokes equations”, Zap. Nauchn. Semin. POMI, 271, 2000, 204–223 | MR | Zbl

[7] G. A. Seregin, “Local regularity of suitable weak solutions to the Navier–Stokes equations near the boundary”, J. Math. Fluid Mech., 4:1 (2002), 1–29 | DOI | MR | Zbl

[8] G. A. Seregin, “Local regularity theory of the Navier–Stokes equations”, Handbook of Mathematical Fluid Dynamics, V. 4, North-Holland, Amsterdam, 2007, 159–200 | DOI

[9] V. A. Solonnikov, “Estimates in $L_p$ of solutions to the initial-boundary value problem for the generalized Stokes system in a bounded domain”, Probl. Math. Anal., 21 (2000), 211–263 | Zbl

[10] V. A. Solonnikov, “Estimates of solutions of the Stokes equations in Sobolev spaces with a mixed norm”, Zap. Nauchn. Semin. POMI, 288, 2002, 204–231 | MR | Zbl

[11] V. A. Solonnikov, “On the estimates of solutions of nonstationary Stokes problem in anisotropic Sobolev spaces and on the estimate of resolvent of the Stokes problem”, Usp. Mat. Nauk, 58:2(350) (2003), 123–156 | DOI | MR | Zbl

[12] D. K. Faddeev, B. Z. Vulich, V. A. Solonnikov, N. N. Uraltseva, Izbrannye glavy analiza i vyschei algebry, Izdatel'stvo LGU, 1981 (Russian) | Zbl