On the local smoothness of weak solutions to the MHD system
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 40, Tome 370 (2009), pp. 5-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove some sufficient condition for local regularity of weak solutions to the system of magnetohydrodynamics. Bibl. – 12 titles.
@article{ZNSL_2009_370_a0,
     author = {V. A. Vyalov},
     title = {On the local smoothness of weak solutions to the {MHD} system},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--21},
     year = {2009},
     volume = {370},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_370_a0/}
}
TY  - JOUR
AU  - V. A. Vyalov
TI  - On the local smoothness of weak solutions to the MHD system
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 5
EP  - 21
VL  - 370
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_370_a0/
LA  - en
ID  - ZNSL_2009_370_a0
ER  - 
%0 Journal Article
%A V. A. Vyalov
%T On the local smoothness of weak solutions to the MHD system
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 5-21
%V 370
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_370_a0/
%G en
%F ZNSL_2009_370_a0
V. A. Vyalov. On the local smoothness of weak solutions to the MHD system. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 40, Tome 370 (2009), pp. 5-21. http://geodesic.mathdoc.fr/item/ZNSL_2009_370_a0/

[1] O. A. Ladyzhenskaya, V. A. Solonnikov, “On solution of some nonstationary problems of magnetohydrodynamics of viscous fluids”, Trudy MIAN USSR, 59, 1960, 115–173 | MR

[2] V. Scheffer, “Hausdorff measure and Navier–Stokes equations”, Commun. Math. Phys., 55 (1977), 97–112 | DOI | MR | Zbl

[3] L. Escauriaza, G. Seregin, V. Sverak, “$L_{3,\infty}$-solutions to the Navier–Stokes equations and backward uniqueness”, Uspekhi Mat. Nauk, 58:2 (2003), 3–44 | DOI | MR | Zbl

[4] O. A. Ladyzhenskaya, G. A. Seregin, “On partial regularity of suitable weak solutions to the three-dimesional Navier–Stokes equations”, J. Math. Fluid Mech., 1 (1999), 356–387 | DOI | MR | Zbl

[5] G. A. Seregin, “Estimates of suitible weak solutions to the Navier–Stockes equations in critical Morrey spaces”, Zap. Nauchn. Semin. POMI, 336, 2006, 199–210 | MR | Zbl

[6] G. A. Seregin, “Local regularity for suitible weak solutions to the Navier–Stokes equations”, Uspekhi Mat. Nauk, 62:3 (2007), 149–168 | DOI | MR | Zbl

[7] Ch. He, Zh. Xin, “Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations”, J. Funct. Anal., 227 (2005), 113–152 | DOI | MR | Zbl

[8] L. Caffarelli, R. V. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl

[9] A. Mahalov, B. Nikolaenko, T. Shilkin, “$L_{3,\infty}$-solutions to the MHD equations”, Zap. Nauchn. Semin. POMI, 336, 2006, 112–132 | MR | Zbl

[10] V. A. Vyalov, “Partial regularity of solutions of magnetohydrodynamic equations”, Problemy Mat. Analiza, 36 (2007), 3–13 | MR

[11] Ch. He, Zh. Xin, “On the regularity of weak solutions to the magnetohydrodynamic equations”, J. Differ. Eqs., 213:2 (2005), 235–254 | DOI | MR | Zbl

[12] H. Koch, V. A. Solonnikov, “$L_p$-estimates of solutions of the nonstationary Stokes problem”, J. Math. Sci., 106:3 (2001), 3042–3072 | DOI | MR