Sufficient conditions of the existence of trapped modes in problems of the linear theory of surface waves
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 38, Tome 369 (2009), pp. 202-223 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A new method is proposed for searching for trapped modes in several problems of the linear water-wave theory. In the case of submerged bodies the method gives simple proofs of known results and in the case of surface piercing bodies the observed condition in completely new. Bibl. – 24 titles.
@article{ZNSL_2009_369_a9,
     author = {S. A. Nazarov},
     title = {Sufficient conditions of the existence of trapped modes in problems of the linear theory of surface waves},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {202--223},
     year = {2009},
     volume = {369},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a9/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Sufficient conditions of the existence of trapped modes in problems of the linear theory of surface waves
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 202
EP  - 223
VL  - 369
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a9/
LA  - ru
ID  - ZNSL_2009_369_a9
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Sufficient conditions of the existence of trapped modes in problems of the linear theory of surface waves
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 202-223
%V 369
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a9/
%G ru
%F ZNSL_2009_369_a9
S. A. Nazarov. Sufficient conditions of the existence of trapped modes in problems of the linear theory of surface waves. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 38, Tome 369 (2009), pp. 202-223. http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a9/

[1] J. J. Stoker, Water waves. The Mathematical Theory with Applications, Reprint of the 1957 original, John Willey Sons, Inc., New York, 1992 | MR

[2] N. Kuznetsov, V. Maz'ya, B. Vainberg, Linear Water Waves, Cambridge University Press, Cambridge, 2002 | MR | Zbl

[3] D. A. Indeitsev, N. G. Kuznetsov, O. V. Motygin, Yu. A. Mochalova, Lokalizatsiya lineinykh voln, Izd-vo S.-Peterb. un-ta, SPb., 2007

[4] F. Ursell, “Trapping modes in the theory of surface waves”, Proc. Camb. Phil. Soc., 47 (1951), 347–358 | DOI | MR | Zbl

[5] D. S. Jones, “The eigenvalues of $\nabla^2u+\lambda u=0$ when the boundary conditions are given on semi-infinite domains”, Proc. Camb. Phil. Soc., 49 (1953), 668–684 | DOI | MR | Zbl

[6] R. M. Garipov, “On the linear theory of gravity waves: the theorem of existence and uniqueness”, Arch. Rat. Mech. Anal., 24 (1967), 352–362 | DOI | MR | Zbl

[7] F. Ursell, “Mathematical aspects of trapping modes in the theory of surface waves”, J. Fluid Mech., 183 (1987), 421–437 | DOI | MR | Zbl

[8] P. McIver, “Trapping of surface water waves by fixed bodies in channels”, Q. J. Mech. Appl. Maths., 44 (1991), 193–208 | DOI | MR | Zbl

[9] A.-S. Bonnet-Ben Dhia, P. Joly, “Mathematical analysis of guided water-waves”, SIAM J. Appl. Math., 53 (1993), 1507–1550 | DOI | MR | Zbl

[10] N. Kuznetsov, R. Porter, D. V. Evans, M. J. Simon, “Uniqueness and trapped modes for surface-piercing cylinders in oblique waves”, J. Fluid Mech., 365 (1998), 351–368 | DOI | MR | Zbl

[11] S. A. Nazarov, “O sguschenii tochechnogo spektra na nepreryvnom v zadachakh lineinoi teorii voln na poverkhnosti idealnoi zhidkosti”, Zap. nauchn. semin. POMI, 348, 2007, 98–126 | MR

[12] O. V. Motygin, “On trapping of surface water waves by cylindrical bodies in a channel”, Wave Motion, 45 (2008), 940–951 | DOI | MR | Zbl

[13] S. A. Nazarov, “Kontsentratsiya lovushechnykh mod v zadachakh lineinoi teorii voln na poverkhnosti zhidkosti”, Mat. sb., 199:12 (2008), 53–78 | DOI | MR | Zbl

[14] C. M. Linton, P. McIver, “Embedded trapped modes in water waves and acoustics”, Wave Motion, 45 (2007), 16–29 | DOI | MR | Zbl

[15] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, izd-vo Leningr. un-ta, L., 1980 | MR

[16] I. V. Kamotskii, S. A. Nazarov, “Uprugie volny, lokalizovannye okolo periodicheskikh semeistv defektov”, Doklady RAN, 368:6 (1999), 771–773 | MR | Zbl

[17] I. V. Kamotskii, S. A. Nazarov, “Eksponentsialno zatukhayuschie resheniya zadachi o difraktsii na zhestkoi periodicheskoi reshetke”, Matem. zametki, 73:1 (2003), 138–140 | DOI | MR | Zbl

[18] I. V. Kamotskii, “O poverkhnostnoi volne, beguschei vdol rebra uprugogo klina”, Algebra i analiz, 20:1 (2008), 86–92 | MR

[19] S. A. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domain”, Sobolev Spaces in Mathematics, V. II, International Mathematical Series, 9, ed. Maz'ya V., 2008, 261–309 | DOI | MR

[20] D. V. Evans, M. Levitin, D. Vasil'ev, “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl

[21] S. A. Nazarov, “Prostoi sposob obnaruzheniya lovushechnykh mod v zadachakh lineinoi teorii poverkhnostnykh voln”, Doklady RAN, 429:6 (2009), 746–749 | MR | Zbl

[22] T. H. Havelock, “Forced surface waves”, Phil. Mag., 8 (1929), 569–576 | Zbl

[23] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[24] F. John, “On the motion of floating bodies. I”, Comm. Pure Appl. Math., 2:1 (1949), 13–57 ; “II”, ibid, 3:1 (1950), 45–101 | DOI | MR | Zbl | MR