@article{ZNSL_2009_369_a9,
author = {S. A. Nazarov},
title = {Sufficient conditions of the existence of trapped modes in problems of the linear theory of surface waves},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {202--223},
year = {2009},
volume = {369},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a9/}
}
TY - JOUR AU - S. A. Nazarov TI - Sufficient conditions of the existence of trapped modes in problems of the linear theory of surface waves JO - Zapiski Nauchnykh Seminarov POMI PY - 2009 SP - 202 EP - 223 VL - 369 UR - http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a9/ LA - ru ID - ZNSL_2009_369_a9 ER -
S. A. Nazarov. Sufficient conditions of the existence of trapped modes in problems of the linear theory of surface waves. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 38, Tome 369 (2009), pp. 202-223. http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a9/
[1] J. J. Stoker, Water waves. The Mathematical Theory with Applications, Reprint of the 1957 original, John Willey Sons, Inc., New York, 1992 | MR
[2] N. Kuznetsov, V. Maz'ya, B. Vainberg, Linear Water Waves, Cambridge University Press, Cambridge, 2002 | MR | Zbl
[3] D. A. Indeitsev, N. G. Kuznetsov, O. V. Motygin, Yu. A. Mochalova, Lokalizatsiya lineinykh voln, Izd-vo S.-Peterb. un-ta, SPb., 2007
[4] F. Ursell, “Trapping modes in the theory of surface waves”, Proc. Camb. Phil. Soc., 47 (1951), 347–358 | DOI | MR | Zbl
[5] D. S. Jones, “The eigenvalues of $\nabla^2u+\lambda u=0$ when the boundary conditions are given on semi-infinite domains”, Proc. Camb. Phil. Soc., 49 (1953), 668–684 | DOI | MR | Zbl
[6] R. M. Garipov, “On the linear theory of gravity waves: the theorem of existence and uniqueness”, Arch. Rat. Mech. Anal., 24 (1967), 352–362 | DOI | MR | Zbl
[7] F. Ursell, “Mathematical aspects of trapping modes in the theory of surface waves”, J. Fluid Mech., 183 (1987), 421–437 | DOI | MR | Zbl
[8] P. McIver, “Trapping of surface water waves by fixed bodies in channels”, Q. J. Mech. Appl. Maths., 44 (1991), 193–208 | DOI | MR | Zbl
[9] A.-S. Bonnet-Ben Dhia, P. Joly, “Mathematical analysis of guided water-waves”, SIAM J. Appl. Math., 53 (1993), 1507–1550 | DOI | MR | Zbl
[10] N. Kuznetsov, R. Porter, D. V. Evans, M. J. Simon, “Uniqueness and trapped modes for surface-piercing cylinders in oblique waves”, J. Fluid Mech., 365 (1998), 351–368 | DOI | MR | Zbl
[11] S. A. Nazarov, “O sguschenii tochechnogo spektra na nepreryvnom v zadachakh lineinoi teorii voln na poverkhnosti idealnoi zhidkosti”, Zap. nauchn. semin. POMI, 348, 2007, 98–126 | MR
[12] O. V. Motygin, “On trapping of surface water waves by cylindrical bodies in a channel”, Wave Motion, 45 (2008), 940–951 | DOI | MR | Zbl
[13] S. A. Nazarov, “Kontsentratsiya lovushechnykh mod v zadachakh lineinoi teorii voln na poverkhnosti zhidkosti”, Mat. sb., 199:12 (2008), 53–78 | DOI | MR | Zbl
[14] C. M. Linton, P. McIver, “Embedded trapped modes in water waves and acoustics”, Wave Motion, 45 (2007), 16–29 | DOI | MR | Zbl
[15] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, izd-vo Leningr. un-ta, L., 1980 | MR
[16] I. V. Kamotskii, S. A. Nazarov, “Uprugie volny, lokalizovannye okolo periodicheskikh semeistv defektov”, Doklady RAN, 368:6 (1999), 771–773 | MR | Zbl
[17] I. V. Kamotskii, S. A. Nazarov, “Eksponentsialno zatukhayuschie resheniya zadachi o difraktsii na zhestkoi periodicheskoi reshetke”, Matem. zametki, 73:1 (2003), 138–140 | DOI | MR | Zbl
[18] I. V. Kamotskii, “O poverkhnostnoi volne, beguschei vdol rebra uprugogo klina”, Algebra i analiz, 20:1 (2008), 86–92 | MR
[19] S. A. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domain”, Sobolev Spaces in Mathematics, V. II, International Mathematical Series, 9, ed. Maz'ya V., 2008, 261–309 | DOI | MR
[20] D. V. Evans, M. Levitin, D. Vasil'ev, “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl
[21] S. A. Nazarov, “Prostoi sposob obnaruzheniya lovushechnykh mod v zadachakh lineinoi teorii poverkhnostnykh voln”, Doklady RAN, 429:6 (2009), 746–749 | MR | Zbl
[22] T. H. Havelock, “Forced surface waves”, Phil. Mag., 8 (1929), 569–576 | Zbl
[23] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[24] F. John, “On the motion of floating bodies. I”, Comm. Pure Appl. Math., 2:1 (1949), 13–57 ; “II”, ibid, 3:1 (1950), 45–101 | DOI | MR | Zbl | MR