Asymptotic modeling of a problem with contrasting stiffness
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 38, Tome 369 (2009), pp. 164-201 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An asymptotic model is found of the Neumann problem for second-order differential equation with piecewise constant coefficients in the composite domain $\Omega\cup\omega$ which are small of order $O(\varepsilon)$ in the subdomain $\omega$. Namely a domain $\Omega(\varepsilon)$ with a singular perturbed boundary is constructed whose solution gives a two-term asymptotic, i.e., of the increased accuracy $O(\varepsilon^2)$, approximation solution for the restriction on $\Omega$ of the original problem. In contrast to other singularly perturbed problems, in the case of contrasting stiffness modeling requires for constructing the contour $\partial\Omega(\varepsilon)$ with ledges, i.e., boundary fragments with curvature $O(\varepsilon^{-1})$. Bibl. – 33 titles.
@article{ZNSL_2009_369_a8,
     author = {S. A. Nazarov},
     title = {Asymptotic modeling of a~problem with contrasting stiffness},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {164--201},
     year = {2009},
     volume = {369},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a8/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Asymptotic modeling of a problem with contrasting stiffness
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 164
EP  - 201
VL  - 369
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a8/
LA  - ru
ID  - ZNSL_2009_369_a8
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Asymptotic modeling of a problem with contrasting stiffness
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 164-201
%V 369
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a8/
%G ru
%F ZNSL_2009_369_a8
S. A. Nazarov. Asymptotic modeling of a problem with contrasting stiffness. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 38, Tome 369 (2009), pp. 164-201. http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a8/

[1] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[2] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[3] J. Sanchez-Hubert, E. Sanchez-Palencia, Vibration and Coupling of Continuous Systems. Asymptotic Methods, Springer Verlag, Heidelberg, 1989 | MR | Zbl

[4] S. A. Nazarov, “Dvuchlennaya asimptotika reshenii spektralnykh zadach s singulyarnymi vozmuscheniyami”, Matem. sbornik, 181:3 (1990), 291–320 | MR | Zbl

[5] S. A. Nazarov, “Pogranichnye sloi i usloviya sharnirnogo opiraniya dlya tonkikh plastin”, Zap. nauchn. semin. POMI, 257, 1999, 228–287 | MR | Zbl

[6] S. A. Nazarov, “Asimptotika resheniya i modelirovanie zadachi Dirikhle v uglovoi oblasti s bystroostsilliruyuschei granitsei”, Algebra i analiz, 19:2 (2007), 183–225 | MR | Zbl

[7] S. A. Nazarov, “Asimptotika reshenii i modelirovanie zadach teorii uprugosti v oblasti s bystroostsilliruyuschei granitsei”, Izvestiya RAN. Ser. matem., 72:3 (2008), 103–158 | DOI | MR | Zbl

[8] Yu. N. Rabotnov, Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1988 | Zbl

[9] J. Sokolowski, J.-P. Zolesio, Introduction to shape optimization: shape sensitivity analysis, Springer-Verlag, Berlin, 1992 | MR | Zbl

[10] A. M. Ilin, “Kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s uzkoi schelyu. II. Oblast s malym otverstiem”, Matem. sb., 103(145):2 (1977), 265–284 | MR | Zbl

[11] V. G. Mazya, S. A. Nazarov, B. A. Plamenevskii, “Ob asimptotike reshenii ellipticheskikh kraevykh zadach pri neregulyarnom vozmuschenii oblasti”, Problemy matem. analiza, 8, izd-vo LGU, L., 1981, 72–153 | MR

[12] V. G. Mazya, S. A. Nazarov, B. A. Plamenevskii, “Asimptoticheskie razlozheniya sobstvennykh chisel kraevykh zadach dlya operatora Laplasa v oblastyakh s malymi otverstiyami”, Izvestiya AN SSSR. Ser. matem., 48:2 (1984), 347–371 | MR | Zbl

[13] V. G. Mazya, S. A. Nazarov, “Asimptotika integralov energii pri malykh vozmuscheniyakh granitsy vblizi uglovykh i konicheskikh tochek”, Trudy moskovskogo matem. obschestva, 50, 1987, 79–129 | MR

[14] V. G. Mazya, S. A. Nazarov, B. A. Plamenevskii, Asimptotika reshenii ellipticheskikh kraevykh zadach pri singulyarnom vozmuschenii oblasti, izd-vo TGU, Tbilisi, 1981 | Zbl

[15] W. G. Mazja, S. A. Nasarow, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, I, Akademie-Verlag, Berlin, 1991 | MR

[16] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[17] J. Sokolowski, A. Żochowski, “On topological derivative in shape optimization”, SIAM Journal on Control and Optimization, 37:4 (1999), 1251–1272 | DOI | MR | Zbl

[18] S. A. Nazarov, Ya. Sokolovskii, “Topologicheskaya proizvodnaya integrala Dirikhle pri obrazovanii tonkoi peremychki”, Sib. matem. zh., 45:2 (2004), 410–426 | MR | Zbl

[19] S. A. Nazarov, A. S. Slutskij, J. Sokolowski, “Topological derivative of the energy functional due to formation of a thin ligament on a spatial body”, Folia Math., 12:1 (2005), 39–72 | MR | Zbl

[20] J. T. Beale, “Scattering frequencies of resonators”, Commun. Pure Appl. Math., 26:4 (1973), 549–563 | DOI | MR | Zbl

[21] Sh. Jimbo, “The singularly perturbed domain and characterization for the eigenfunctions with Neumann boundary condition”, J. Differ. Eq., 77:2 (1989), 322–350 | DOI | MR | Zbl

[22] R. R. Gadylshin, “O sobstvennykh znacheniyakh ‘ganteli s tonkoi ruchkoi’ ”, Izv. RAN. Ser. matem., 69:2 (2005), 45–110 | DOI | MR | Zbl

[23] S. A. Nazarov, J. Sokolowski, “Asymptotic analysis of shape functionals”, J. Math. Pures Appl., 82:2 (2003), 125–196 | DOI | MR | Zbl

[24] M. C. Delfour, J.-P. Zolésio, Shapes and Geometries: Analysis, Differential Calculus, and Optimization, Ser. Adv. Design and Control, SIAM, Philadelphia, 2001 | MR | Zbl

[25] S. A. Nazarov, M. V. Olyushin, “O vozmuscheniyakh sobstvennykh znachenii zadachi Neimana vsledstvie variatsii granitsy oblasti”, Algebra i analiz, 5:2 (1993), 169–188 | MR | Zbl

[26] M. Van-Daik, Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967

[27] S. A. Nazarov, “Asimptoticheskie usloviya v tochkakh, samosopryazhennye rasshireniya operatorov i metod sraschivaemykh asimptoticheskikh razlozhenii”, Trudy S.-Peterburg. matem. ob-va, 5, 1996, 112–183

[28] V. I. Smirnov, Kurs vysshei matematiki, T. 2, Nauka, M., 1967

[29] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy Moskovsk. matem. obschestva, 16, 1963, 219–292

[30] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI | Zbl

[31] V. G. Mazya, B. A. Plamenevskii, “Otsenki v $L_p$ i v klassakh Geldera i printsip maksimuma Miranda–Agmona dlya reshenii ellipticheskikh kraevykh zadach v oblastyakh s osobymi tochkami na granitse”, Math. Nachr., 77 (1977), 25–82 | MR

[32] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[33] S. A. Nazarov, Yu. A. Romashev, “Izmenenie koeffitsienta intensivnosti pri razrushenii peremychki mezhdu dvumya kollinearnymi treschinami”, Izv. AN ArmSSR. Mekhanika, 1982, no. 4, 30–40 | Zbl