On unique solvability in the problem of water waves above submerged bodies
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 38, Tome 369 (2009), pp. 143-163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Time-harmonic motion of an ideal unbounded fluid in the presence of rigid bodies located under fluid's free surface is considered. New criteria for unique solvability of the corresponding linear boundary-value problem are suggested. These criteria are based on introduction of two compact self-adjoint integral operators and investigation of their eigenvalues and eigenfunctions. For the two-dimensional problem an algorithm is developed for finding solutions to the homogeneous problem (so-called trapped modes). Examples of numerical computations illustrating the theoretical results are given. Bibl. – 18 titles.
@article{ZNSL_2009_369_a7,
     author = {O. V. Motygin},
     title = {On unique solvability in the problem of water waves above submerged bodies},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {143--163},
     year = {2009},
     volume = {369},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a7/}
}
TY  - JOUR
AU  - O. V. Motygin
TI  - On unique solvability in the problem of water waves above submerged bodies
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 143
EP  - 163
VL  - 369
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a7/
LA  - ru
ID  - ZNSL_2009_369_a7
ER  - 
%0 Journal Article
%A O. V. Motygin
%T On unique solvability in the problem of water waves above submerged bodies
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 143-163
%V 369
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a7/
%G ru
%F ZNSL_2009_369_a7
O. V. Motygin. On unique solvability in the problem of water waves above submerged bodies. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 38, Tome 369 (2009), pp. 143-163. http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a7/

[1] N. G. Kuznetsov, V. G. Maz'ya, B. R. Vainberg, Linear Water Waves: A Mathematical Approach, Cambridge University Press, Cambridge, 2002 | MR | Zbl

[2] V. G. Mazya, “Granichnye integralnye uravneniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 27, VINITI, M., 1988, 131–228 | MR | Zbl

[3] F. Ursell, “Trapping modes in the theory of surface waves”, Proc. Camb. Phil. Soc., 47:2 (1951), 347–358 | DOI | MR | Zbl

[4] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971

[5] V. P. Trofimov, “O kornevykh podprostranstvakh operatorov, analiticheski zavisyaschikh ot parametra”, Matem. issled., 3:9 (1968), 117–125 | MR | Zbl

[6] M. McIver, “Trapped modes supported by submerged obstacles”, Proc. Roy. Soc. London A, 456 (2000), 1851–1860 | DOI | MR | Zbl

[7] F. John, “On the motion of floating bodies. I”, Comm. Pure Appl. Math., 2:1 (1949), 13–57 | DOI | MR | Zbl

[8] M. J. Simon, F. Ursell, “Uniqueness in linearized two-dimensional water-wave problems”, J. Fluid Mech., 148 (1984), 137–154 | DOI | MR | Zbl

[9] V. G. Mazya, “K statsionarnoi zadache o malykh kolebaniyakh zhidkosti v prisutstvii pogruzhennogo tela”, Tr. seminara S. L. Soboleva, 2, 1977, 57–79 | MR | Zbl

[10] O. V. Motygin, P. McIver, “A uniqueness criterion for linear problems of wave-body interaction”, IMA J. Appl. Math., 6:3 (2003), 229–250 | DOI | MR

[11] M. McIver, “An example of nonuniqueness in the two-dimensional linear water wave problem”, J. Fluid Mech., 315 (1996), 257–266 | DOI | MR | Zbl

[12] R. Porter, “Trapping of water waves by pairs of submerged cylinders”, Proc. Roy. Soc. London A, 458 (2002), 607–624 | DOI | MR | Zbl

[13] M. McIver, R. Porter, “Trapping of waves by a submerged elliptical torus”, J. Fluid Mech., 456 (2002), 277–293 | DOI | MR | Zbl

[14] O. V. Motygin, “A new approach to uniqueness for linear problems of wave-body interaction”, Proc. 21st Workshop on Water Waves and Floating Bodies, Loughborough, UK, 2006, 129–132

[15] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, T. 1–4, Mir, M., 1977–1982

[16] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | Zbl

[17] G. Vainikko, Multidimensional Weakly Singular Integral Equations, Springer-Verlag, Berlin, 1993 | MR | Zbl

[18] C. Brezinski, M. Redivo Zaglia, Extrapolation Methods. Theory and Practice, North-Holland, Amsterdam, 1991 | MR | Zbl