Investigation of normal waves in a~porous layer surrounded by elastic half-spaces
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 38, Tome 369 (2009), pp. 127-142

Voir la notice de l'article provenant de la source Math-Net.Ru

The wave field and dispersion equations are established for the porous layer surrounded by two elastic half-spaces. The porous layer is described by the effective model of the medium in which elastic and fluid layers alternate. In order to investigate the normal waves, all real roots of dispersion equations are determined and their movements with increasing wave number are investigated. As a result, the dispersion curves of all normal waves are constructed and dependence of the normal waves on the parameters of the porous layer and the elastic half-spaces is analyzed. Bibl. – 6 titles.
@article{ZNSL_2009_369_a6,
     author = {L. A. Molotkov and A. A. Mukhin},
     title = {Investigation of normal waves in a~porous layer surrounded by elastic half-spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {127--142},
     publisher = {mathdoc},
     volume = {369},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a6/}
}
TY  - JOUR
AU  - L. A. Molotkov
AU  - A. A. Mukhin
TI  - Investigation of normal waves in a~porous layer surrounded by elastic half-spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 127
EP  - 142
VL  - 369
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a6/
LA  - ru
ID  - ZNSL_2009_369_a6
ER  - 
%0 Journal Article
%A L. A. Molotkov
%A A. A. Mukhin
%T Investigation of normal waves in a~porous layer surrounded by elastic half-spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 127-142
%V 369
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a6/
%G ru
%F ZNSL_2009_369_a6
L. A. Molotkov; A. A. Mukhin. Investigation of normal waves in a~porous layer surrounded by elastic half-spaces. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 38, Tome 369 (2009), pp. 127-142. http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a6/