Diffraction of a plane acoustic wave by an impedance cone. Surface waves
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 38, Tome 369 (2009), pp. 95-109 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Diffraction of a plane wave by a circular impedance cone is studied. The surface waves propagating from the vertex of the cone are discussed. The excitation coefficient is computed by use of the incomplete separation of variables in the problem. Bibl. – 14 titles.
@article{ZNSL_2009_369_a4,
     author = {M. A. Lyalinov},
     title = {Diffraction of a~plane acoustic wave by an impedance cone. {Surface} waves},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {95--109},
     year = {2009},
     volume = {369},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a4/}
}
TY  - JOUR
AU  - M. A. Lyalinov
TI  - Diffraction of a plane acoustic wave by an impedance cone. Surface waves
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 95
EP  - 109
VL  - 369
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a4/
LA  - ru
ID  - ZNSL_2009_369_a4
ER  - 
%0 Journal Article
%A M. A. Lyalinov
%T Diffraction of a plane acoustic wave by an impedance cone. Surface waves
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 95-109
%V 369
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a4/
%G ru
%F ZNSL_2009_369_a4
M. A. Lyalinov. Diffraction of a plane acoustic wave by an impedance cone. Surface waves. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 38, Tome 369 (2009), pp. 95-109. http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a4/

[1] J.-M. L. Bernard, Methode analytique et transformces fonctionnelles pour la diffraction d'ondes par une singularite conique: equation integrale de noyau non oscillant pour le cas d'impedance constante, rapport CEA-R-5764, Editions Dist-Saclay, 1997

[2] J.-M. L. Bernard, M. A. Lyalinov, “Diffraction of acoustic waves by an impedance cone of an arbitrary cross-section”, Wave Motion, 33 (2001), 155–181 | DOI | MR | Zbl

[3] J.-M. L. Bernard, M. A. Lyalinov, “Electromagnetic scattering by a smooth convex impedance cone”, IMA Journ. Appl. Math., 33 (2004), 285–333 | DOI | MR

[4] M. A. Lyalinov, “Diffraction of a plane wave by an impedance cone”, J. Math. Sciences, 127:6 (2005), 2446–2460 | DOI | MR

[5] M. A. Lyalinov, N. Y. Zhu, V. P. Smyshlyaev, “Scattering of a plane electromagnetic wave by a circular hollow cone with thin semi-transparent walls”, IMA J. Appl. Math., 2009 (to appear)

[6] J.-M. L. Bernard, M. A. Lyalinov, N. Y. Zhu, “Analytical-numerical calculation of diffraction coefficients for a circular impedance cone”, IEEE Trans. Antennas Propag., 56:6 (2008), 1616–1623 | DOI | MR

[7] M. A. Lyalinov, “The far field asymptotics in the problem of diffraction of an acoustic plane wave by an impedance cone”, Russian J. Math. Physics, 16:2 (2009), 277–286 | DOI | MR | Zbl

[8] V. A. Borovikov, Difraktsiya na mnogougolnikakh i mnogogrannikakh, Nauka, M., 1966 | MR

[9] V. P. Smyshlyaev, “Diffraction by conical surfaces at high frequences”, Wave Motion, 22 (1995), 311–324 | DOI | MR

[10] V. M. Babich, D. B. Dement'ev, B. A. Samokish, V. P. Smyshlyaev, “On evaluation of the diffraction coefficients for arbitrary “non-singular” directions of a smooth convex cone”, SIAM Appl. Math., 60:2 (2000), 536–573 | DOI | MR | Zbl

[11] D. S. Jones, “Scattering by a cone”, Quaterly J. Mech. Appl. Math., 50 (1997), 499–523 | DOI | MR | Zbl

[12] V. M. Babich, A. V. Kuznetsov, “O rasprostranenii poverkhnostnykh elektromagnitnykh voln, analogichnykh volnam Releya, v sluchae kraevykh uslovii Leontovicha”, Zap. nauchn. semin. POMI, 324, 2005, 5–19 | MR | Zbl

[13] R. Grimshow, “Propagation of surface waves at high frequences”, J. Inst. Maths. Applics, 4 (1968), 174–193 | DOI | MR

[14] V. M. Babich, V. S. Buldyrev, I. A. Molotkov, Prostranstvenno-vremennoi luchevoi metod, Izd. Leningr. Univ., 1985 | MR | Zbl