On the velocity of the Rayleigh wave propagating along curvilinear surfaces
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 38, Tome 369 (2009), pp. 48-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In order to investigate propagation of the Rayleigh waves on curvilinear boundaries, we consider wave propagation along cylindrical and spherical surfaces. For the elastic media with the indicated boundaries, we construct exact solutions of equations of the theory of elasticity and use asymptotics of Hankel and Legendre functions. On the basis of comparison of results, we make assumption about dependence of velocity of the Rayleigh wave on the small curvature of route and on the small curvature in perpendicular direction. Bibl. – 7 titles.
@article{ZNSL_2009_369_a2,
     author = {N. Ya. Kirpichnikova and L. A. Molotkov},
     title = {On the velocity of the {Rayleigh} wave propagating along curvilinear surfaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {48--63},
     year = {2009},
     volume = {369},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a2/}
}
TY  - JOUR
AU  - N. Ya. Kirpichnikova
AU  - L. A. Molotkov
TI  - On the velocity of the Rayleigh wave propagating along curvilinear surfaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 48
EP  - 63
VL  - 369
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a2/
LA  - ru
ID  - ZNSL_2009_369_a2
ER  - 
%0 Journal Article
%A N. Ya. Kirpichnikova
%A L. A. Molotkov
%T On the velocity of the Rayleigh wave propagating along curvilinear surfaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 48-63
%V 369
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a2/
%G ru
%F ZNSL_2009_369_a2
N. Ya. Kirpichnikova; L. A. Molotkov. On the velocity of the Rayleigh wave propagating along curvilinear surfaces. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 38, Tome 369 (2009), pp. 48-63. http://geodesic.mathdoc.fr/item/ZNSL_2009_369_a2/

[1] V. M. Babich, “O rasprostranenii voln Releya vdol poverkhnosti odnorodnogo uprugogo tela proizvolnoi formy”, DAN SSSR, 137:6 (1961), 1263–1266

[2] V. M. Babich, N. Ya. Rusakova, “O rasprostranenii voln Releya po poverkhnosti neodnorodnogo tela proizvolnoi formy”, ZhVMiMF, 4 (1962), 652–665

[3] V. M. Babich, N. Ya. Kirpichnikova, “A new approach to the problem of the Rayleigh wave propagation along the boundary of a nonhomogeneous elastic body”, Wave Motion, 40 (2004), 209–223 | DOI | MR | Zbl

[4] G. I. Petrashen, L. A. Molotkov, P. V. Krauklis, Volny v sloisto-odnorodnykh izotropnykh uprugikh sredakh, II, Nauka, L., 1985

[5] V. G. Rekach, Rukovodstvo k resheniyu zadach po teorii uprugosti, Vysshaya shkola, M., 1977 | Zbl

[6] I. M. Ryzhik, I. S. Gradshtein, Tablitsa integralov, summ, ryadov i proizvedenii, GITTL, M.-L., 1951

[7] L. A. Molotkov, Matrichnyi metod v teorii rasprostraneniya voln v sloistykh uprugikh i zhidkikh sredakh, Nauka, L., 1984