The measure preserving transformations of the jump Lévy process
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 15, Tome 368 (2009), pp. 130-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $\xi(t)$, $t\in[0,1]$, be a jump Lévy process. By $\mathcal P_\xi$ we denote the law of $\xi$ in the Skorokhod space $\mathbb D[0,1]$. Under some nondegeneracy condition on the Lévy measure $\Lambda$ of the process we construct a group of a $\mathcal P_\xi$-preserving transformations of the space $\mathbb D[0,1]$. Bibl. – 10 titles.
@article{ZNSL_2009_368_a9,
     author = {S. S. Gribkova},
     title = {The measure preserving transformations of the jump {L\'evy} process},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {130--140},
     year = {2009},
     volume = {368},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a9/}
}
TY  - JOUR
AU  - S. S. Gribkova
TI  - The measure preserving transformations of the jump Lévy process
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 130
EP  - 140
VL  - 368
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a9/
LA  - ru
ID  - ZNSL_2009_368_a9
ER  - 
%0 Journal Article
%A S. S. Gribkova
%T The measure preserving transformations of the jump Lévy process
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 130-140
%V 368
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a9/
%G ru
%F ZNSL_2009_368_a9
S. S. Gribkova. The measure preserving transformations of the jump Lévy process. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 15, Tome 368 (2009), pp. 130-140. http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a9/

[1] A. Vershik, N. Tsilevich, “Quasi-invariance of the gamma process and multiplicative properties of the Poisson–Dirichlet measures”, C. R. Acad. Sci. Paris Ser. I Math., 329 (1999), 163–168 | DOI | MR | Zbl

[2] J. Kerstan, K. Mattes, J. Mecke, Infinite Divisible Point Processes, Akademie-Verlag, Berlin, 1978

[3] A. V. Skorokhod, “O differentsiruemosti mer, sootvetstvuyuschikh sluchainym protsessam. I”, Teoriya veroyatn. i ee primen., 2:4 (1957), 629–649

[4] A. V. Skorokhod, Issledovaniya po teorii sluchainykh protsessov, Izd-vo Kievskogo un-ta, 1961

[5] D. Ryuel, Statisticheskaya mekhanika, Nauka, M., 1971

[6] N. V. Smorodina, “The measure preserving and nonsingular transformations of the jump Lévy processes”, Theory of Stoch. Proc., 14:1 (2008), 144–154 | MR | Zbl

[7] S. Albeverio, N. Smorodina, “A distributional approach to multiple stochastic integrals and transformations of the Poisson measure 2”, Acta Appl. Math., 102 (2008), 319–343 | DOI | MR | Zbl

[8] M. A. Lifshits, “Metod rassloenii dlya protsessov s nezavisimymi prirascheniyami”, Zap. nauchn. semin. LOMI, 130, 1983, 109–121 | MR

[9] M. A. Lifshits, E. Yu. Shmileva, “Puassonovskie mery, kvaziinvariantnye otnositelno multiplikativnykh preobrazovanii”, Teor. veroyatn. i ee primen., 46:4 (2001), 697–712 | DOI | MR | Zbl

[10] M. A. Lifshits, E. Yu. Shmileva, “Kriterii kvazi-invariantnosti puassonovskikh mer otnositelno “lineinykh” transformatsii prostranstva”, Uspekhi mat. nauk, 56:6 (2001), 159–160 | DOI | MR | Zbl