@article{ZNSL_2009_368_a7,
author = {F. G\"otze and A. Yu. Zaitsev},
title = {Rates of approximation in the multidimensional invariance principle for sums of i.i.d. random vectors with finite moments},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {110--121},
year = {2009},
volume = {368},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a7/}
}
TY - JOUR AU - F. Götze AU - A. Yu. Zaitsev TI - Rates of approximation in the multidimensional invariance principle for sums of i.i.d. random vectors with finite moments JO - Zapiski Nauchnykh Seminarov POMI PY - 2009 SP - 110 EP - 121 VL - 368 UR - http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a7/ LA - ru ID - ZNSL_2009_368_a7 ER -
%0 Journal Article %A F. Götze %A A. Yu. Zaitsev %T Rates of approximation in the multidimensional invariance principle for sums of i.i.d. random vectors with finite moments %J Zapiski Nauchnykh Seminarov POMI %D 2009 %P 110-121 %V 368 %U http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a7/ %G ru %F ZNSL_2009_368_a7
F. Götze; A. Yu. Zaitsev. Rates of approximation in the multidimensional invariance principle for sums of i.i.d. random vectors with finite moments. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 15, Tome 368 (2009), pp. 110-121. http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a7/
[1] A. A. Borovkov, “O skorosti skhodimosti v printsipe invariantnosti”, Teoriya veroyatn. i ee primen., 18:2 (1973), 217–234 | MR | Zbl
[2] A. de Acosta, “Inequalities for $B$-valued random vectors with applications to the strong law of large numbers”, Ann. Prob., 9 (1981), 157–161 | DOI | MR | Zbl
[3] V. H. de la Peña, E. Giné, Decoupling. From dependence to independence. Randomly stopped processes. $U$-statistics and processes. Martingales and beyond, Probability and its Applications (New York), Springer-Verlag, New York, 1999 | DOI | MR | Zbl
[4] U. Einmahl,, “Extensions of results of Komlós, Major and Tusnády to the multivariate case”, J. Multivar. Anal., 28 (1989), 20–68 | DOI | MR | Zbl
[5] F. Götze, A. Yu. Zaitsev, “Bounds for the rate of strong approximation in the multidimensional invariance principle”, Teoriya veroyatn. i ee primen., 53:1 (2008), 100–123 | DOI
[6] W. B. Johnson, G. Schechtman, J. Zinn, “Best constants in moment inequalities for linear combinations of independent and exchangeable random variables”, Ann. Probab., 13 (1985), 234–253 | DOI | MR | Zbl
[7] J. Komlós, P. Major, G. Tusnády, “An approximation of partial sums of independent RV'-s and the sample DF. I”, Z. Wahrscheinlichkeitstheor. verw. Geb., 32 (1975), 111–131 ; “II”, 34 (1976), 34–58 | DOI | MR | Zbl | DOI | MR | Zbl
[8] M. A. Lifshits, Lektsii po silnoi approksimatsii, izd-vo SPbGU, S.-Peterburg, 2007
[9] P. Major, “The approximation of partial sums of independent r.v.'s”, Z. Wahrscheinlichkeitstheor. verw. Geb., 35 (1976), 213–220 | DOI | MR | Zbl
[10] H. P. Rosenthal, “On the subspaces of $L_{p}$ $(p>2)$ spanned by sequences of independent random variables”, Israel J. Math., 8 (1970), 273–303 | DOI | MR | Zbl
[11] H. P. Rosenthal, “On the span in $L^p$ of sequences of independent random variables. II”, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. II: Probability theory (Univ. California, Berkeley, Calif., 1970/1971), Univ. California Press, Berkeley, Calif., 1972, 149–167 | MR | Zbl
[12] A. I. Sakhanenko, “Otsenki v printsipe invariantnosti”, Trudy inst. matem. SO AN SSSR, 5, Nauka, Novosibirsk, 1985, 27–44 | MR
[13] A. Yu. Zaitsev, “Tochnost silnoi gaussovskoi approksimatsii dlya summ nezavisimykh odinakovo raspredelennykh sluchainykh vektorov”, Zap. nauchn. semin. POMI, 364, 2009, 148–165 | MR | Zbl