Probabilistic approach to solution of nonlinear PDEs arising in financial mathematics
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 15, Tome 368 (2009), pp. 20-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We apply a probabilistic approach that allows to solve the Cauchy problem for nonlinear parabolic equations and systems developed in our previous papers to problems arising in financial mathematics while constructing arbitrage-free option prices on non-ideal markets. Bibl. – 11 titles.
@article{ZNSL_2009_368_a2,
     author = {Ya. I. Belopolskaya},
     title = {Probabilistic approach to solution of nonlinear {PDEs} arising in financial mathematics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {20--52},
     year = {2009},
     volume = {368},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a2/}
}
TY  - JOUR
AU  - Ya. I. Belopolskaya
TI  - Probabilistic approach to solution of nonlinear PDEs arising in financial mathematics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 20
EP  - 52
VL  - 368
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a2/
LA  - ru
ID  - ZNSL_2009_368_a2
ER  - 
%0 Journal Article
%A Ya. I. Belopolskaya
%T Probabilistic approach to solution of nonlinear PDEs arising in financial mathematics
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 20-52
%V 368
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a2/
%G ru
%F ZNSL_2009_368_a2
Ya. I. Belopolskaya. Probabilistic approach to solution of nonlinear PDEs arising in financial mathematics. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 15, Tome 368 (2009), pp. 20-52. http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a2/

[1] U. Cetin, R. Jarrow, P. Protter, “Liquidity risk and arbitrage pricing theory”, Finance and Stochastics, 8 (2004), 311–341 | DOI | MR | Zbl

[2] U. Cetin, R. Jarrow, P. Protter, M. Warachka, “Pricing options in an extended Black-Scholes economy with illiquidity: theory and empirical evidence”, The Review of Financial Studies, 19 (2006), 493–529 | DOI

[3] L. A. Bordag, R. Frey, Nonlinear option pricing models for illiquid market: scaling properties and explicit solutions

[4] R. Frey, A. Stremme, “Market volatility and feedback effects from dynamic hedging”, Math. Finance, 7 (1997), 351–374 | DOI | MR | Zbl

[5] H. McKean, “A class of Markov processes associated with nolinear parabolic equations”, Proc. Nat. Acad. Sci. USA, 59:6 (1966), 1907–1911 | DOI | MR

[6] M. Freidlin, “Quasilinear parabolic equations and measures in functional spaces”, Funct. Anal. and Appl., 1:3 (1967), 237–240 | MR

[7] M. Freidlin, Functional integration and partial differential equations, Princeton Univ. Press, 1985 | MR | Zbl

[8] Ya. I. Belopolskaya, Yu. L. Daletskii, “Issledovanie zadachi Koshi dlya sistem kvazilineinykh uravnenii s pomoschyu markovskikh protsessov”, Izv. VUZ. Matematika, 1978, no. 12, 6–17 | MR | Zbl

[9] Ya. I. Belopolskaya, Yu. L. Dalecky, Stochastic equations and differential geometry, Kluwer, 1990 | MR | Zbl

[10] Ya. I. Belopolskaya, Yu. L. Daletskii, “Markovskie protsessy assotsiirovannye s nelineinymi parabolicheskimi sistemami”, DAN SSSR, 250:3 (1980), 268–271 | MR

[11] Ya. Belopolskaya, “Probability approach to solution of nonlinear parabolic equations”, Problems of Math. Anal., 13 (1992), 21–35