A characterization and a class of omnibus tests for the exponential distribution based on the empirical characteristic function
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 15, Tome 368 (2009), pp. 268-281 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The characteristic function $\varphi(t)$ of an exponentially distributed random variable is characterized by having its squared modulus identically equal to the real part of $\varphi(t)$. We study the behavior of a class of consistent tests for exponentiality based on a weighted integral involving the empirical counterparts of these quantities, corresponding to suitably rescaled data. Bibl. – 25 titles.
@article{ZNSL_2009_368_a18,
     author = {N. Henze and S. G. Meintanis},
     title = {A characterization and a~class of omnibus tests for the exponential distribution based on the empirical characteristic function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {268--281},
     year = {2009},
     volume = {368},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a18/}
}
TY  - JOUR
AU  - N. Henze
AU  - S. G. Meintanis
TI  - A characterization and a class of omnibus tests for the exponential distribution based on the empirical characteristic function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 268
EP  - 281
VL  - 368
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a18/
LA  - en
ID  - ZNSL_2009_368_a18
ER  - 
%0 Journal Article
%A N. Henze
%A S. G. Meintanis
%T A characterization and a class of omnibus tests for the exponential distribution based on the empirical characteristic function
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 268-281
%V 368
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a18/
%G en
%F ZNSL_2009_368_a18
N. Henze; S. G. Meintanis. A characterization and a class of omnibus tests for the exponential distribution based on the empirical characteristic function. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 15, Tome 368 (2009), pp. 268-281. http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a18/

[1] M. V. Alba, D. Barrera, M. D. Jiménez, “A homogeneity test based on empirical characteristic functions”, Comput. Statist., 16 (2001), 255–270 | DOI | MR | Zbl

[2] L. Baringhaus, N. Gürtler, N. Henze, “Weighted integral test statistics and components of smooth tests of fit”, Austral. New Zeal. J. Statist., 42 (2000), 179–192 | DOI | MR

[3] K. Bury, Statistical Distributions in Engineering, Cambridge University Press, UK, 1999

[4] T. W. Epps, “Limiting behavior of the ICF test for normality under Gram–Charlier alternatives”, Statist. Probab. Lett., 42 (1999), 175–184 | DOI | MR | Zbl

[5] N. Gürtler, N. Henze, “Goodness-of-fit tests for the Cauchy distribution based on the empirical characteristic function”, Ann. Inst. Statist. Math., 52 (2000), 267–286 | DOI | MR | Zbl

[6] N. Henze, B. Klar, S. G. Meintanis, “Invariant tests for symmetry about an unspecified point based on the empirical characteristic function”, J. Multivar. Anal., 87 (2003), 275–297 | DOI | MR | Zbl

[7] N. Henze, S. G. Meintanis, “Goodness-of-fit tests based on a new characterization of the exponential distribution”, Commun. Statist. Theor. Meth., 31 (2002), 1479–1497 | DOI | MR | Zbl

[8] N. Henze, S. G. Meintanis, “Tests of fit for exponentiality based on the empirical Laplace transform”, Statistics, 36 (2002), 147–161 | DOI | MR | Zbl

[9] N. Henze, S. G. Meintanis, “Recent and classical tests for exponentiality: A partial review with comparisons”, Metrika, 61 (2005), 29–45 | DOI | MR | Zbl

[10] N. Hušková, S. Meintanis, “Change point analysis based on empirical characteristic functions”, Metrika, 63 (2006), 145–168 | DOI | MR

[11] M. Hušková, S. Meintanis, “Change point analysis based on ranks of empirical characteristic functions”, Sequential Analysis, 25 (2006), 1–16 | DOI | MR

[12] A. Kankainen, N. G. Ushakov, “A consistent modification of a test for independence based on the empirical characteristic function”, J. Math. Sciences, 89 (1998), 1486–1494 | DOI | MR | Zbl

[13] B. Klar, S. Meintanis, “Tests for normal mixtures based on the empirical characteristic function”, Comput. Statist. Dat. Anal., 49 (2005), 227–242 | DOI | MR | Zbl

[14] I. A. Koutrouvelis, S. G. Meintanis, “Testing for stability based on the empirical characteristic function with applications to financial data”, J. Statist. Comput. Simul., 64 (1999), 275–300 | DOI | Zbl

[15] M. Matsui, A. Takemura, “Empirical characteristic function approach to goodness-of-fit tests for the Cauchy distribution with parameters estimated by MLE or EISE”, Ann. Instit. Statist. Math., 57 (2005), 183–199 | DOI | MR | Zbl

[16] S. G. Meintanis, “A class of omnibs tests for the Laplace distribution based on the empirical characteristic function”, Commun. Statist. Theor. Meth., 33 (2004), 925–948 | DOI | MR | Zbl

[17] S. G. Meintanis, “Goodness-of-fit tests for the logistic distribution based on empirical transforms”, Sankhya, 66 (2004), 304–324 | MR

[18] S. G. Meintanis, “Consistent tests for symmetric stability with finite mean based on the empirical characteristic function”, J. Statist. Plann. Inferen., 128 (2005), 373–380 | DOI | MR | Zbl

[19] S. G. Meintanis, “Permutation tests for homogeneity based on the empirical characteristic function”, J. Nonparametr. Statist., 17 (2005), 583–592 | DOI | MR | Zbl

[20] S. G. Meintanis, G. Iliopoulos, “Characterizations of the exponential distribution based on certain properties of its characteristic function”, Kybernetika, 39 (2003), 295–298 | MR | Zbl

[21] S. G. Meintanis, N. G. Ushakov, “Binned goodness-of-fit tests based on the empirical characteristic function”, Statist. Probab. Lett., 69 (2004), 305–314 | DOI | MR | Zbl

[22] R. J. Serfling, Approximation Theorems of Mathematical Statistics, John Wiley and Sons, New York, 1980 | MR | Zbl

[23] N. G. Ushakov, Selected Topics in Characteristic Functions, VSP, Utrecht, 1999 | MR | Zbl

[24] A. W. van der Vaart, J. A. Wellner, Weak Convergence and Empirical Processes, Springer-Verlag, New York, 1996 | MR

[25] L.-X. Zhu, G. Neuhaus, “Nonparametric Monte Carlo tests for multivariate distributions”, Biometrika, 87 (2000), 919–928 | DOI | MR | Zbl