@article{ZNSL_2009_368_a18,
author = {N. Henze and S. G. Meintanis},
title = {A characterization and a~class of omnibus tests for the exponential distribution based on the empirical characteristic function},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {268--281},
year = {2009},
volume = {368},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a18/}
}
TY - JOUR AU - N. Henze AU - S. G. Meintanis TI - A characterization and a class of omnibus tests for the exponential distribution based on the empirical characteristic function JO - Zapiski Nauchnykh Seminarov POMI PY - 2009 SP - 268 EP - 281 VL - 368 UR - http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a18/ LA - en ID - ZNSL_2009_368_a18 ER -
%0 Journal Article %A N. Henze %A S. G. Meintanis %T A characterization and a class of omnibus tests for the exponential distribution based on the empirical characteristic function %J Zapiski Nauchnykh Seminarov POMI %D 2009 %P 268-281 %V 368 %U http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a18/ %G en %F ZNSL_2009_368_a18
N. Henze; S. G. Meintanis. A characterization and a class of omnibus tests for the exponential distribution based on the empirical characteristic function. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 15, Tome 368 (2009), pp. 268-281. http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a18/
[1] M. V. Alba, D. Barrera, M. D. Jiménez, “A homogeneity test based on empirical characteristic functions”, Comput. Statist., 16 (2001), 255–270 | DOI | MR | Zbl
[2] L. Baringhaus, N. Gürtler, N. Henze, “Weighted integral test statistics and components of smooth tests of fit”, Austral. New Zeal. J. Statist., 42 (2000), 179–192 | DOI | MR
[3] K. Bury, Statistical Distributions in Engineering, Cambridge University Press, UK, 1999
[4] T. W. Epps, “Limiting behavior of the ICF test for normality under Gram–Charlier alternatives”, Statist. Probab. Lett., 42 (1999), 175–184 | DOI | MR | Zbl
[5] N. Gürtler, N. Henze, “Goodness-of-fit tests for the Cauchy distribution based on the empirical characteristic function”, Ann. Inst. Statist. Math., 52 (2000), 267–286 | DOI | MR | Zbl
[6] N. Henze, B. Klar, S. G. Meintanis, “Invariant tests for symmetry about an unspecified point based on the empirical characteristic function”, J. Multivar. Anal., 87 (2003), 275–297 | DOI | MR | Zbl
[7] N. Henze, S. G. Meintanis, “Goodness-of-fit tests based on a new characterization of the exponential distribution”, Commun. Statist. Theor. Meth., 31 (2002), 1479–1497 | DOI | MR | Zbl
[8] N. Henze, S. G. Meintanis, “Tests of fit for exponentiality based on the empirical Laplace transform”, Statistics, 36 (2002), 147–161 | DOI | MR | Zbl
[9] N. Henze, S. G. Meintanis, “Recent and classical tests for exponentiality: A partial review with comparisons”, Metrika, 61 (2005), 29–45 | DOI | MR | Zbl
[10] N. Hušková, S. Meintanis, “Change point analysis based on empirical characteristic functions”, Metrika, 63 (2006), 145–168 | DOI | MR
[11] M. Hušková, S. Meintanis, “Change point analysis based on ranks of empirical characteristic functions”, Sequential Analysis, 25 (2006), 1–16 | DOI | MR
[12] A. Kankainen, N. G. Ushakov, “A consistent modification of a test for independence based on the empirical characteristic function”, J. Math. Sciences, 89 (1998), 1486–1494 | DOI | MR | Zbl
[13] B. Klar, S. Meintanis, “Tests for normal mixtures based on the empirical characteristic function”, Comput. Statist. Dat. Anal., 49 (2005), 227–242 | DOI | MR | Zbl
[14] I. A. Koutrouvelis, S. G. Meintanis, “Testing for stability based on the empirical characteristic function with applications to financial data”, J. Statist. Comput. Simul., 64 (1999), 275–300 | DOI | Zbl
[15] M. Matsui, A. Takemura, “Empirical characteristic function approach to goodness-of-fit tests for the Cauchy distribution with parameters estimated by MLE or EISE”, Ann. Instit. Statist. Math., 57 (2005), 183–199 | DOI | MR | Zbl
[16] S. G. Meintanis, “A class of omnibs tests for the Laplace distribution based on the empirical characteristic function”, Commun. Statist. Theor. Meth., 33 (2004), 925–948 | DOI | MR | Zbl
[17] S. G. Meintanis, “Goodness-of-fit tests for the logistic distribution based on empirical transforms”, Sankhya, 66 (2004), 304–324 | MR
[18] S. G. Meintanis, “Consistent tests for symmetric stability with finite mean based on the empirical characteristic function”, J. Statist. Plann. Inferen., 128 (2005), 373–380 | DOI | MR | Zbl
[19] S. G. Meintanis, “Permutation tests for homogeneity based on the empirical characteristic function”, J. Nonparametr. Statist., 17 (2005), 583–592 | DOI | MR | Zbl
[20] S. G. Meintanis, G. Iliopoulos, “Characterizations of the exponential distribution based on certain properties of its characteristic function”, Kybernetika, 39 (2003), 295–298 | MR | Zbl
[21] S. G. Meintanis, N. G. Ushakov, “Binned goodness-of-fit tests based on the empirical characteristic function”, Statist. Probab. Lett., 69 (2004), 305–314 | DOI | MR | Zbl
[22] R. J. Serfling, Approximation Theorems of Mathematical Statistics, John Wiley and Sons, New York, 1980 | MR | Zbl
[23] N. G. Ushakov, Selected Topics in Characteristic Functions, VSP, Utrecht, 1999 | MR | Zbl
[24] A. W. van der Vaart, J. A. Wellner, Weak Convergence and Empirical Processes, Springer-Verlag, New York, 1996 | MR
[25] L.-X. Zhu, G. Neuhaus, “Nonparametric Monte Carlo tests for multivariate distributions”, Biometrika, 87 (2000), 919–928 | DOI | MR | Zbl