Small deviations of the maximal element of a sequence of independent variables with smooth weights
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 15, Tome 368 (2009), pp. 190-200
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the logarithmic small deviations of the maximal element of a sequence $\{\lambda_jX_j\}$, where $\{X_j\}$ are independent copies of non-negative random variable $X$ and $\{\lambda_j\}$ is a non-increasing sequence of positive numbers, satisfying certain conditions of regularity. Bibl. – 3 titles.
@article{ZNSL_2009_368_a14,
author = {L. V. Rozovsky},
title = {Small deviations of the maximal element of a~sequence of independent variables with smooth weights},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {190--200},
year = {2009},
volume = {368},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a14/}
}
TY - JOUR AU - L. V. Rozovsky TI - Small deviations of the maximal element of a sequence of independent variables with smooth weights JO - Zapiski Nauchnykh Seminarov POMI PY - 2009 SP - 190 EP - 200 VL - 368 UR - http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a14/ LA - ru ID - ZNSL_2009_368_a14 ER -
L. V. Rozovsky. Small deviations of the maximal element of a sequence of independent variables with smooth weights. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 15, Tome 368 (2009), pp. 190-200. http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a14/
[1] F. Aurzada, “On the lower tail probabilities of some random sequences in $l_p$”, J. Theoret. Probab., 20 (2007), 843–858 | DOI | MR | Zbl
[2] F. Aurzada, “A short note on small deviations of sequences of i.i.d. random variables with exponentially decreasing weights”, Statist. Probab. Lett., 78 (2008), 2300–2307 | DOI | MR | Zbl
[3] L. V. Rozovsky, “Small deviations of series of weighted i.i.d. non-negative random variables with a positive mass at the origin”, Statist. Probab. Lett., 79 (2009), 1495–1500 | DOI | MR | Zbl